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Introducing the problem



1. Starting examples

Z =y Z =y
N x € [—2,5] /\:UE[25]
Ay € [=3,1] Ay € [=3,1]
N z € [—14,17] N z € |—14,6]
[ )
z—azy 2z =y
A T €| A x € [5,0]
Ay € [— /\y€[32]
/\ZE 1513 N [1512]
[ )
z—xy 2z =y
N x €| A x € 2,8
Ny €2 Ay € (2,4
/\z6816 N z € [8,16]
[ )
z =y z =y

Az e |[—1,1] N x €
—

Ay e [-1,1] ANyedld

Az € [2,2] AN zeD



2. A view of the multiplication

o times = {(x,y,2) € R’| z = zy}



3. Another view of the multiplication

o times = {(x,y,2) € R’| z = zy}



4. Several kinds of intervals

e Let (D, <) be a totally ordered set.

e Definition A (true) intervalis a possibly empty subset Bf, of the form
{r €eD|e X zandx < d}

with e, d any elements ob. It is written
e, d]

e Definition A convexsubset oD is a subset. of D such that, for all: € D andy € D,

reaandy €ea — [x,y] C a.



5. Several kinds of intervals, next
e Property The set of intervals ofR, <) is closed by finite intersection but not by infinite intersection.

e Property The set of convex subsets @, <) is closed by infinite intersection and is equal to the set of
generalized intervalsf R, that is to say, the set of subsetsRbf one of the 10 forms:

1. 0,

2. {reRl|e<zandr <d}, written e, d],

3. {reR|e<zandx < d}, written [e, d),

4. {zeR|e<zandx <d}, written (e, d),

5. {rx €RJe< zandx < d}, written (e, d),

6. {reR|e<uz}, written e, +00),

7. {reR|z <d}, written (—oo, d],

8. {reR|e<uz}, written (e, +00),

9. {zreR|z<d}, written (—oo, d),
10. R, written (—oo, +00),

wheree, d are elements dR, with e < d, but case 2, where < d.



6. The general constraint solving problem
e Let D be a set an® a set ofselectedsubsets oD. A n-blocis a Cartesian product afselected subsets.

e Given a subset of D" and elements,,...,a, of D, we are interested in computing, if they exists,
elementsi, ..., a, of D such that] x - - - xa, is the least:-bloc for which the folowing equivalence of

constraints holds:
(x1,...,2,) ET (x1,...,x,) ET

N 1 € aq - /\561661/1

A T, € ay, A x, €al

e Thusa) x---xal is the leasti-bloc such that

rNoax--xXa, = r N ayx--Xa

e which is also the least-bloc such that

r N oaX---xXa, C ayX---xa,.



7. Visualization of the problem

lx‘).
[

Lt 9

B |4

\

| |
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8. Approximation space

e Definition An approximation space an ordered paifD, D), where
1. D is any set,
2.Dis a set ofselectecsubsets oD,
3. D and® belong toD.
The space isotal if for any subset of D the subset oD, denoted and defined by,
apxp(r) == N{x € D|r Cz},
belongs taD.

11



9. Approximation space, next

e Remark 1 In the partially ordered séP (D), C), the setapx p(r) is the greatest lower bound of the set
of elements ofD which contairv:

apxp(r) = i%f {reD|r Cua}

e Remark 2 If (D, D) is total then, in the partially ordered sé2(D), C), the setapx p(r) is always the
greatest element of the set of element®okhich contain:

apxp(r) = min{zx € D|r C z}

e Remark 3 A sufficient condition in order thaiD, D) is total, is thatD is closed by intersection (finite
and infinite)

12



10. Properties ofapx
e Let (D, D) be an approximation space. We wrigex for apx p.
e Properties For any subsets s of D and any family of subsets of D, indexed by a set:

(i) r Capx(r), (contraction),
(i) apx(apx(r)) = apx (r), (idempotence),
(i) rCs — apx(r)Capx(s), (weakly increasing),

(V) apx (Uierri) = apx (Uierapx (r;)).
e Let (D", D) be the approximation space defined by
D" = {a;x---Xa,| a; € D, foralli € 1..n},

The elements oD are called:-blocson D.
e Property If r is a subset oD" then,

apX p(n)(r) = apxp(mi(r))X- - - X apxp(my(r)).
where the-th projectionof r is denoted and defined by
mi(r) ;== {d € D |there existsd,, ... ,d,) € r withd = d,}.
e ConclusionGiven a subset of D" and an-bloca onD, we want to compute

apX pm)(r N a)

13



11. Our approximation spaces
e Let (R, <) be the ordered set of real numbers andFlée a finite subset dR of the form

F={ -k fwrs s Ju, o, fro oo o5 foa, fids

with f; < fyaandf; = —f;
e We consider the four approximation spaces of the form

(R, RW),
with R being successively
1. the set composed & and the (true) intervals gR, <),
2. the set of convex subsets @, <),

3. the set composed &, () and themachineintervals of(R, <), that is to say, the non-empty intervals
whose endpoints belong £

4. the set of convermachinesubsets ofR, <), that is to say, those intervals whose greatest lower bounds
and least upper bounds, if they exist, belongrto

e For each of these spaces, givesg R, we want to compute
apx (3 (times N a)
with

times = {($1,$2,CE3) c R’ | Tr3 = 3311'2}.
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12. Sharper approximation space

¢ The following property allow us to replace thpx computations in the approximation spac¢esd3 by
apx computations in the approximation spacesmd4.

e Property If (D, D) and(D’, D’) are approximation spaces such that
DCD, DCD

then, for anyr C D,
apxp(r) = apx p(apx p(r))

15



13. Sharper approximation space, next

e Proof We must prove that
N{a € D|r Ca} = N{a € D|apxp(r) C a}
Thus it is sufficient to prove that for all € D we have
rCa <« apxp(r) Ca
If r C athenapxp/(r) C apxp(a) and, sincer € D', we haveapx () C a. Thus
rCa — apxp(r) Ca

Sincer C apx p(r),

16



14. Translation of an approximation space

e The computations afpx (times Na) in the approximation spaceésnd4 will be performed by translations
and computations into more convenient approximation spaces.

e Definition A translationof a total approximation spa¢®, D) into an approximation spa¢®’, D’) is a
mappingyp, of typeP(D) — P(D’), such that,

1. p(apxp(rNa)) = apx p(e(r) Np(a)), forallr C D anda € D,

2. the restriction ofp to D defines an injective mapping of tyfie — D'.

17



15. Convenient approximation space

e Let (D, <) be a totally ordered set having a least elemeint D) and a greatest elementix(D) and let
D be the set of intervals d.

e Property For all intervalsa;, even empty,
max{inf(ay), ..., inf(a,)},
min{sup(ay),...,sup(a,)}|

arN---Na, =

e Property In the approximation spaa®, D), for all intervalsa;, even empty,
min{inf(ay), ..., inf(a,)},
max{sup(a1), ..., sup(a,)}|

apx (a1 U---Uay,)

18



About ordered sets: computing minima and maxima
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16. Multi-monotonic function
e Leta be am-box in (D, <), that is to say, a Cartesian productwofintervals of(D, <).
e Definition The set of endingsf « is denoted and defined by
if a = I
ends (a) := b, fa=0, else

B {min(m(a)), max(mi(a))} x- - - x {min(m,,(a)), max(m,,(a))}

e Definition A function of typea — D is multi-monotonicif for all (ay,...,a,) € aand alli € 1..m,
the mapping
x— flag, ..., 01, T, Qg ey Q)

of typem;(a) — D, is monotonic, that is to say, weakly increasing or weakly decreasing.

e Example of a multi-monotonic function iR, <), with a = [—2, 5] x [—3, 1],

f (w1, 29) — 120

e Property of the endingsLet a be a non emptyn-box in (D, <) and f a multi-monotonic function of
typea — D. The elements

min{ f(x) |z € a}, max{f(z)|x € a}

exist and are respectivly equal to

min{ f(x) |z € ends(a)}, max{f(x)|z € ends(a)}.

20



17. Computing a maximum, ex-
ample

¢ In (R, <), we want to compute

y = max{xi1xs |1 € [—2,5] andx, € |3, 1]}

e Since multiplication is multi-monotonic,

y =
max{(—2)(=3), (=2)(+1), (+5)(=3), (+5)(+1)} =
max{6, —2, —15,5} =

0
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About ordered sets: convex projections

22



18. Moving from dimensionn to dimension 2

e Let (D, <) be an ordered set.

e Definition The subset of D", with n > 2, preserves convexitf; for all convex subsets; of (D, <), the
projectionm,(r N a; X---xa,_1 xD) is convex.

e Definition Let r be a subset dD”, with n > 2. A i-cutof r, is a subset ob? of the form
{(331,562) c D? \ (041, ce s O, X1, Qg - - 70@'—1,562) S 7’}7

with eacho; € 7;(r) and: taken between andn —1.

e Theorem A sufficient condition in order that a subsetdf, with n > 3, preserves convexity, is that
eachi-cut s of r preserves convexity and is such thats) = m;(r).
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19. The dimension 2 case

Theorem A sufficient condition in order that a subsebf D? preserves convexity, is that
e the projectionry(r) is convex,
e Whenr is not empty, there exist monotonic mappingsndr, of typer(r) — D such that,
(x1,29) €T — 29 € [r(x1), T(22)],

for all z; € my(r) andz, € D.

24



20. Example of a relation which preserves convexity

e Consider the subset &°.
{(.Cl?,y,Z) S [—1,1]X[—1,O]XR‘<$+1)2+22 §4} U
{(5,9,2) € [FL1]x (0, 1] xR (z — 17 + 2 < 4}

corners -—

25



e This subset preserves convexity, since-tsits are of one of the 4 forms:
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21. Other examples of relations which preserve convexity

e The following relations preserve convexity

times = {(x,9,2) € R’| 2 = xy},

ndivision {(z,y,2) € R®|z = yzandy < 0},
(z,y,2) € R®|z = yzandy = 0},
(z,y,2) € R®|z = yzandy > 0},

zdivision = {
pdivision = {

e becausedivision = ({0} x {0} xR) U ({R} x {0} x{0}),

e the 1-cuts and-cuts oftimes and thel-cuts ofndivision andpdivision are of one of the two forms,

AAT
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e the2-cuts ofndivision are of one of the two forms,

=

e and the2-cuts ofpdivision are of one of the two forms,

28



22. Decomposition of the multiplication

e Let a be a Cartesain product of convex subsetR of

e \We have

(m1(times N a), mo(times N a), ms(times Na)) =

a; N m3(ndivision N azXxazsxD) U
ay; N mws(zdivision N azXasxD) U
aj; N mg(pdivision N agx ayx D)

as N m3(ndivision N ag X ay X D :
as N m3(zdivision N a3z x a; X D)
as N ws(pdivision N az X aj X D

as M 7r3(t1mes M a1 Xas X D

a; = m(a)),

ndivision = {(u,v,w) € R*|(w,v,u) € times andv < 0},
zdivision = {(u,v,w) € R*|(w,v,u) € times andv = 0},
pdivision = {(u,v,w) € R*| (w,v,u) € times andv > 0}.

29




e and each set of one of the forms

ap N my(times N a; X a; x D),

ar N ms(ndivision N a; X a;xD),
ap N ms(zdivision N a; X a; x D),
ay, N m(pdivision N a; X a; x D),

IS convex.
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About orderded sets: computing projections
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23. Good relation

e Definition A goodn-ary relation, withn > 3, is a subset of D" whosei-cutss are all good binary
relations and are such that(s) = m;(r).

e Definition A goodbinary relation is a subsetof D such that

e the projectionr;(r) is convex and admits a least element if it is lower bounded, and a greatest element,
if it is upper bounded,

e the projectionr,(r) is convex,
e Whenr is not empty, there exist monotonic mappingsndr, of typer(r) — D such that,
(x1,x2) ET > X9 € [r(x71), T(22)],

forall x; € m(r) andz, € D.
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24. Computation of projections

e Theorem For any good:-ary relation andi-boxa in (D, <), withn > 2,

0, if A=0, else
min{r(z) | x € ends(A)},

Ta(rNa) = _—
" max{7(z) |z € ends (A)}|’

with
A = (m(r) Nmya)) < x (T (r) N mea(a)),

r(xy, ..., xpq) = min({x, | (x1,...,2,) € 1}),
T(xy, ..y xpa) = max({x, | (x1,...,2,) € T}),
the functions-, 7 being necessarily defined when the hvxs not empty.

=

e Remark If (D, <) admits a least and a greatest element, then the first formula of the theorem simplifies

to
inf{r,(z) |z € ends (A)}, |

) = T 1| o o  ends (2]

33



25. Projection of the double corner

e \We want to computes(corners N a) with ¢ a3-box of (R, <) and
{(@9,2) € [-1,1x[~1,0]xR | (¢ + 1) + 2* < 4} u)

comers = ({(x, y,2) € [-1,1]x(0, 1] xR (z — 1)? + 2% < 4}

e Thus
0, if A=10, else
ms(corners Na) = min{ corners (u) | u € ends (A)},
m3(a) max{cormers (u) | u € ends (A)}
with

A= (m(a) N [=1,1]) X (m2(a) N [-1,1]),
corners (x,y) := 0,

VA= (z+1)2, ify <0,
\/4—(:1:—1)2, if y > 0.

corners (x,y) = {

34



e Finally

m3(corners Na) =

0,ifa; =0V ay =0, else
0, 4= (ar+1)2, faz <0V (a2<0 A —ay >ar),

agﬂ
0, A= (@ —1)2, faz>0V (23>0 A —ay < ay)
= m(a)N|—1,1],
= m(a) N[-1,1],
7T3(CL>

9

= min(a;), whena; # 0,
= max(a;), whena; # 0.
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Aggregated approximation space
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26. Aggregated approximation space

e Definition Given a total approximation spa¢®, D) and a subset of D we denote and define the
aggregateof r by

agrp(r) := {apxp({z}) [z € r}

e Definition Theagregateof the approximation spadé, D) is then the approximation space
(D', D") := (agrp(D), {agrp(a)|a € D}

The elements ofgrp(D) are callecatomic elementsf D.

e Remark If (D', D') is the aggregate space(@, D) then(D’", ') is the aggregate space (@", D™)
and
agr pm) (11 X+ -xry,) = agrp(ry)x---xagrp(ry).
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27. Example

e Let (R, R) be the approximation space, wh&tds the set of convex subsetsi®f whose lower an upper
bounds, if they exist, belong to

F.={-1,0,1}.
The aggregate space @, R) is (R, R/),
e Where
<_3>7 (_007 _1)7
<_2>7 [_17 1}7
(1), (—1,0),
R :=1¢ (0), ¢ := [0, 0], :
(1), 0,1),
(2), 1, 1],
(3) (1,400)

e andR’ is the set of intervals dD’, <), with (i) < (j) < i <.
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28. Example, next

e Consider the subset &
inverse := {(z,y) € R*|zy = 1}.

e According to
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e We get

-
~ S~ S~ . .

~ T S~ S~ ~—— ~——

O o~
=
| 5 g o =
/I\‘l_Amm 0./
~ X ~— 71VA
— — -
— X = - —~

_1)VA_|_
~ | o X A

-~
m17111+
_ _ _071./1.)
— e~ 0

I

—

2

S

S

=

Y

~—

)

rR

an

<
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29. Translation into the aggregated space

e TheoremIf in an approximation spacd®, D) the atomic elements @ are two by two disjoint then, for
all » C D anda € D,

apx (r Na) = apx (Urerapx ({z})) N a)

e Corollary If the atomic elements dP are two by two disjoint, then the mappiagr is a translation of
the total approximation spa¢B, D) into its aggregatéD’, D’).

e Recalled definition A translationof a total approximation spad®, D) into an approximation space
(D', D') is a mappingp, of typeP(D) — P(D’), such that,

1. p(apxp(rNa)) = apx p(e(r) Np(a)), forallr C D anda € D,

2. the restriction ofp to D defines an injective mapping of tyfe — D'.
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30. Moving to machine reals

e Let (R, R) be the approximation space, whéReis the set of convex subsets Bfwhoses lower and
upper bounds, if they exist, belong to

F = {f—k;f—k—HV . .,fl,f(),fl; .- -:fk—lyfk}7
with f; < fy andf = —f;
e The aggregated space(®, R) is (R', R’), where
<—2n —1>, (—007 f—‘n)7
<_2n>7 [f—n7 f—n]7
<.—.1.>, (f—.l; :f())a
R/ = <O>, [f()) f()]a
<1>, (f07 f1)7
<éﬁ§, [f;,.fn},
<27L—|—1> (fna +OO)

R’ is the set of intervals dD’, <), with (i) < (j) < i <.

e Remark If the f/s are IEEE floating point numbers théghis coded as.
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31. Moving to machine reals, next

e By letting ¢(a) := agrp(a), for all convex subset of R, with eventual lower and upper boundsHn

(D) =0,
(i fi]) = [(22), (29)]
o([fir 17)) = [(2), (25 —1)]
o((fi i) = [(2i+1), (2))]
p((fis [7) = [(2i+1), (25 —1)]
p(lfi,+o0)) = [(20), 2n+1)]
p((=00, fil) = [(=2n=1),(2))]
p((fi,+00)) = [(2i+1), (2n+1)]
p((=00, f3)) = [(2n=1),(2j-1)]
p((=00,+00)) = [(2n—1), (2n+1)]
e For the relations
times = {(z,y,2) € R*| z = zy},
ndivision = {(z,y,2) € R*|y = 2z andy < 0},
zdivision = {(x,y,z) € R*|y = rz andy = 0},
pdivision = {(x,y,2) € R®|y = vz andy > 0}
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we have

agr . (times) = {(z,y,2) € (R)’| 2 € [z|x]y, =[x]y]},

agr s (pdivision) = {(z,y,2) € (R')’|z € [z|/]y, z[/]y] andy < (0)},
agr s (zdivision) = ({(0)} x {{0)} xR") U (R'>x{{0)} x{(0)}),
agr 3 (ndivision) = {(v,y,z) € (R | z € [z|/]ly, z[/ly] andy = (0)}

44



32. Discrete multiplication

e Values of(i) | x| (7)
first value whose condition
part is satisfied:
(0), i=0o0rj=0,
(=) x| {—7), i < 0andj < 0,
N (=) [x](j)),  i<Oandj >0,
GG = (i x(=),  i>0andj <0,
(1), i=1orj=1,
(2n+1), i =2n+1ouj =2n+1,
<2a(f%~f%)>, i even,j even andf%f% e F,
<2a(fL§JfL%J)+1>’ in the other cases.
e With
—(k) = (=Fk),
a(x) = max{k € 0.n| fi < x},
B(x) = max{k € 0.n| fr < z}.
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33. Discrete multiplication, next

e Values of(i) [x] (5)

first value whose condition
part is satisfied:

(0Y, i=0o0rj=0,

(=) [X] (=), i< 0andj <0,
DKG) = —(<.—i> B4 <j>), z <0 andj > 0,
=@ =), i>0andj <0,
(2n+1), i =2n4+10uj = 2n+1,
(1), i=1lorj=1,
(20(f3 1) +2) i even,j even andf, f; € F,
(26(f41 f(%1)+1>, in the other cases.
e With
—(k) = (=Fk),
a(x) = max{k € 0.n|fi < x},
B(x) = max{k € 0.n| fi < z}.
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34. Discrete division

e Values of(i) |/| ()
first value whose condition
part is satisfied:
(0), i=0,
(=) /] {=2), i < 0andj <0,
=AY, i< oand; >0,
OO =0 @i, i>o0andj <o,
(1), i=10rj=2n+1,
(2n+1), i=2n+1o0ouj=2n+1,
(2a(f3 /1), i even,j evenandf;/f; € F,
<20‘(fL§J/f(%1)+1>’ in the other cases.
e With
alx) = max{k € 0.n| fi <z},
B(x) = max{k € 0.n| fi < z}.
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35. Discrete division, next

e Values of(i) [/] ()
first value whose condition
part is satisfied:
(0), i=0,
(=) [/1{=7), i <0andj <0,
=G, i<oand) > o,
VI = (@), i>0andj <o,
(2n+1), i =2n+lorj=2n+1,
(1), i=10rj=2n+1,
(26(f;/f))+2),  ievenjevenandf;/f; €F,
<25(f[;1/f@)+1>, in the other cases.
e With
—(k) = (=k),
alx) = max{k € 0.n| fi <z},
B(x) = max{k € 0.n| fi < z}.
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36. Solving the multiplication in the machine convex subsets
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apx (3 (times Na) =

a;

divz (u,v)

divn (u,v) :

divp (u,v) :

mult (u,v) :

0 (apx »/ [al N divn (a3, az) U

X

o (apx »/ (ag N divn (a3, a;) U

a3 N mult (a1, as))

ai M divz (ag, CLQ) U

)

a1 N divp (as, as)

as M divz (CL3, CL1) U) )
)

as M lep (ag, CLQ)

p(mi(a)),

if (0) € wand(0) € vthen[{—n), (n)] elsed,
inf{z|/]y | (z,y) € ends (ux (v N [(=2n—1),(=1)]))}
sup{z|/ly | (z,y) € ends (ux(vN[(=2n—1), (=1)]))}

inf{z|/|y | (z,y) € ends (ux(vN [(1), 2n+1])}, ]
sup{z[/ly | (x,y) € ends(ux (v N [(1),(2n+1)]))}|

inf{x|x|y | (z,y) € ends(uxv)},
sup{a[x]y | (x,y) € ends (uxv)}]

50




F .=
<
<
<

Dl’u_\l” — /N TN TN TN TN N TN N
| = o - m =)l el el el e
_ - O = I_l S~ T T S S S S

~ -~ - -
m4 | &2 = - “loocosT T
o - ~ ~—— ~——
~ TS T

MM AN —H O
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37. Example of discrete multiplication

e Table of (i) [x] (5)

e Table of (i) [x](5)
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38. Example of discrete division

e Table of () |/| ()



e Table of () [/] ()
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Extension of an approximation space
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39. Adherence

e Definition. Let (D, D) be an approximation space ané subset oD. Theadherenceof r is denoted
and defined by

adhp(r) ={x € D|rna+#0,foralla € Dwithx € a}

e Properties For all subsets, s of D and all element of D:
(i) rNa=0 — adh(r)Nna=170,
(i) rCa=0 — adh(r)Ca, if 2 holds,
(i) adh(r Us) = adh(r)Uadh(s), if 1 holds,
(iv) apx(rna)=apx(adh(r)Na), ifland2 hold.
where 1 and 2 are the conditions:
1. the setD is closed for finite intersection,

2. any subset ob’ of the formD’ — «’, with ¢’ € D’, can be written as a union of elements¥f
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40. Translation into an extended space

e TheoremLet (D, D), (D', D’) be two approximation, spaces, the first one being total, such that
1. the setD’ is closed for finite intersection,

2. any subset ob’ of the formD’ — «’, with «’ € D’, can be written as a union of elements¥f

3. the restriction ofadh 1 to D defines a bijection of typ® — D',

4.a = adhp(a) N D, foralla € D.

The mapping: — adhp(r), of typeP(D) — P(D’), is then a translation of the first approximation space
into the second.

e Recalled definition A translationof a total approximation spad®, D) into an approximation space
(D', D') is a mappingp, of typeP(D) — P(D’), such that,

1. p(apxp(rNa)) = apx p(e(r) N(a)), forallr C D anda € D,

2. the restriction ofp to D defines an injective mapping of tyfe — D'.
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41. Extension of R

e We extend the approximation space
(R,) ~ (set of reals
R ) |setof convex subsets &f

e into the approximation space

R) (RUR UR"U{-o0,+0o0},
(R’) - ({[az,y] | € {—c0} URUR" andy € {+c0} URU R})

e With
R™ = {z7 |z € R},

R" = {z"|z € R}
and such that, for all elementsy of R,

rT<y «— —oc0o<z <zr<zT <y <y<y' <400
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42. Extension of R, next

e For all convex subset of R, the setp(a) := adh(a) is the following interval oR’:

e For the relations

»(0) =0,

#(le, d)) = le,d],

v(le, d)) = le,d],

v((e, d]) le*, d],

((e, d)) et d7l,

plle, +00)) = [e,+o0],

(=00, d]) [—o0,d],

p((e, +00)) €™, 400,

p((—00,d)) [—o00,d"],

p((—00, +00)) = [—00,+00)
times = {(z,y,2) € R®*|z = xy},
ndivision = {(z,y,z) € R’ |y = zz andy < 0},
zdivision = {(x,y,z) € R*|y = zz andy = 0},
pdivision = {(x,y,2) € R’|y = vz andy > 0}.
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e We have

adh ;) (times ) = {(z,y,2) € (R)?|z € [z|x]y, z[x]y]},
adh @ (pdivision ) = {(z,y,2) € (R')*|z € [z|/|y, =[/]y] andy < 0},
adh . (zdivision) = ({0} x{0}xR) U ({R}x{0}x{0}),

@ (

adh i (ndivision) = {(z,y,2) € (R')?|z € [z|/]y, =[/]y] andy > 0}.
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43. Extended multiplication and division

o x|x|y
first value whose condition
part is satisfied:
(—x)|x](—y), =z < 0andy <0,
—((—x)[x]y), z < 0andy > 0,
—(z[x](—=y)), x> 0andy <0,
x|x]y = {0, x=00ry =0,
0+, x=0"ory=0",
+00, T = +00 0ry = +00,
(p(z)1p(y))~, v € RTory e R7,
(tp(z)1p(y))", = € R ory € RY,
Ty, r € Randy € R.
e With
+00, If v = —o0,
(—rp(x))~, ifzeRT,
—x = {—ux, if z € R,

(—rp(x))*", ifxeR™,
—00, if © = +o0.
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e and, for allrx € R,

p(z7) :

Yo
=
=<

Ip
p (z
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44. Extended multiplication and division, next

e z[X]y

first value whose condition
part is satisfied:

(—x)[X](=y), x < 0andy <0,
—((=2)[X]y), =z <0andy >0,
—(z|x|(—y)), x> 0andy <0,

z[x|y = 10, r=00uy =0,
+00, r = +00 00Uy = 400,
0+, r=0"ouy=0",

(tp (z)1p(y))*, = € R"ouy € R,
, € R ouy € R7,
xy, x € Randy € R.
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ex[/lyandz|/|y

zl/ly = z[x](1/y),
zl/ly = z[x][(1/y),

—00, if x =0,
0, If v = —o0,
(rp(1/z))~, if x € RT,
l/x = {1/x, if r € R,
(rp(1/x))*, ifx e R,
0r, if © = +o0,
+00, if =07,
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45. Solving the multiplication in the convex subsets

We conclude that, in the approximation spaReR ) of the reals by convex subsetsgifs a3-box,
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apX (3 (times Na) =

al N divz (ag, CLQ) U
)
a1 N divp (a3, as)

¢! (apx »/ [a1 N divn (a3, az) U

X
as M divz (ag, al) U ,
0 apx g [ag N divn (a3, a) UJ)
as N divp (ag, as)
X
0 (a3 N mult (ay, as))

a; = p(mila)),
divz(u,v) = if 0 € uwand0 € v then[—oo, +o¢] elsel,

int{z|/|y | (z,y) € ends (ux (v [—oo, ]))},]

divn (u,v) = O
T sy | () € ends (ux (v 1 [=00,07)))

divp(u,v) = inf{z|/]y | (z,y) € ends (ux (v N [O+,+oo]))},]
0 [sup{x[/ly | (2,y) € ends (ux (v N[0T, +00]))}|

_inf{xtxjy | (z,y) € ends (uxv)},

M) = ip ey | (r.9) € ends (uxv))
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Complement
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47. About unions and intersections, eventually infinite

e Let D be any set of sets. Thanionof the elements oD is denoted and defined by

UD = {z |there exists. € D, withx € a}.

e Theintersectionof the elements oD is denoted and defined by

ND := {x e UD|forall a € D, we haver € a}.

e Definition The setD is closed by intersectiotif for any non empty subsé@d’ of D the seth D’ belongs
D.

¢ Definition The setD is closed by finite intersectiahfor all finite non empty subse®’ of D the seth D’
belongs taD.

e Property A sufficient condition in order thaP is closed by intersection is that
1. D is closed by finite intersection and

2. any sequence of elements®f strictly decreasing for inclusion, is finite.
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