W-GRAMMAR

Guy de Chastellier
PROJET DE TRADUCTION AUTOMATIQUE
Alain Colmerauer DEPARTEMENT D'INFORMATIQUE
UNIVERSITE DE MONTREAL, MONTREAL, CANADA

Abstract

Summary A new type of grammars is presented here, called W-grammars. It is shown how they can be used in translation processes. Examples are taken from the fields of algebraic manipulation and computational linguistics.

\section*{Introduction}

In the Algol 68 report 1, A. van Wijngaarden used a new formalism to define the syntax of this language. We have called this formalism "Wgrammar'. It can be show that grammars of this type are very powerful since they can define every recursively enumerable set ${ }^{2}$. Moreover they can be used to describe complex string manipulations, and they seem to have good descriptive qualities. This is why, in a first approach, we have adopted them for our English-French machine translation project.

The experience we have had during the past year with W -grammars puts us in a favorable position to explain what they are and how they can be used in practical applications.

Definition of a W-grammar [1]

We presume the reader is familiar with the notions of string and vocabulary. As is usual, we denote by V^{*} the set of all strings over a vocabulary V . V^{*} contains the empty string, which is denoted by λ.

Any finite sequence of strings separated by commas will be called a complex string. If F denotes a set of strings then F^{+}denotes the set of all the complex strings which can be constructed over $\mathrm{F} . \mathrm{F}^{+}$contains the empty complex string, which is denoted by \wedge.

A W-grammar is defined by:

(1) a finite vocabulary V_{i} the elements of which are called variables;
(2) a finite vocabulary V_{u} the elements of which are called values and such that $\mathrm{V}_{\mathrm{i}} \cap \mathrm{V}_{\mathrm{u}}=\phi$;
(3) a finite subset B of V_{u}^{*} the elements of which are called basic strings;
[1] This is our own definition of a W-grammar; it differs from van Wijngaarden's, but it should describe the same system.
(4) a element of $V_{i} U V_{u}$ called axiom and usually denoted by S;
(5) a finite binary relation [2] on $\left(V_{i} \cup V_{u}\right) *$ denoted by \rightarrow and such that

$$
x \rightarrow y \quad \text { implies } \quad x \in V_{i} ;
$$

the elements of \rightarrow are called meta-rules;
(6) a finite binary relation on $\left(\left(V_{i} \cup V_{u}\right)^{*}\right)^{+}$denoted by \rightarrow and such that

$$
r \mapsto s \text { implies } r \in\left(V_{i} \cup V_{u}\right)^{*} \text { and } s \nLeftarrow \Lambda \text {; }
$$

the elements of \mapsto are called pseudo-rules.
The relation \rightarrow will be extended as follows [3]:
$\mathrm{x} \rightarrow \mathrm{y}$ implies $\mathrm{vxw} \rightarrow \mathrm{vyw}$ for any
$x ; y ; v ; w \in\left(V_{u} \cup V_{i}\right)$ *
From the reflexive transitive closure [4] \rightarrow of the extended relation \longrightarrow, and from \longmapsto, we can now define a new binary relation \Rightarrow on $\left(V_{u}^{*}\right)^{+}$:

There exist $r^{\prime} ; s^{\prime} \in\left(\left(V_{i} \cup V_{u}\right)^{*}\right)^{+}$such that

$$
r^{\prime} \longmapsto s^{\prime}
$$

and such that r and s can be respectively obtained from r^{\prime} and s^{\prime} by substituting for each occurrence of any variable U a string $t \in V_{u}^{*}$ such that

$$
u \longrightarrow * t
$$

If U occurs more than once in r^{\prime} and/ or s^{\prime}, the same string t has to be substituted at each occurrence.
[2] We define a binary relation on a set E as a subset ρ of the Cartesian product $E \times E$. For convenience a ρb is written instead of ($a, b) \in P$.
[3] If x and y denote strings, then $x y$ denotes the string obtained by writing the string denoted by x on the left of the string denoted by y. Of course $x \lambda=\lambda x=x$ for any string x.
[4] The reflexive transitive closure ρ * of a binary relation ρ is defined as:

The elements of \Rightarrow will be called rules. So the meta-rules permit the construction, from each pseudo-rule, of a possibly infinite number of rules.

In the same way as we have extended the relation \rightarrow, we will extend the relation \Rightarrow [5] thus:

$$
\begin{aligned}
& r \Rightarrow s \quad \text { implies } p, r, q \rightarrow p, s, q \text { for any } \\
& r ; s ; p ; q \in\left(V_{u}^{*}\right)^{+}
\end{aligned}
$$

The language L defined by a W-grammar is then:

$$
\begin{aligned}
L=\left\{t \in B^{+} \mid \text {there exists } s \in V_{u}^{*}\right. \text { with } \\
\left.S \rightarrow \rightarrow^{*} s \rightarrow t\right\}
\end{aligned}
$$

Any string $s \in V_{u}^{*}$ such that $S \rightarrow{ }^{*} s$ will be called an axiomatic string.

Example 1
The following W-grammar defines the wellknown non-context-free language L, each element of which is of the form:

$$
\underbrace{a, a, \ldots, a,}_{n \text { times }} \underbrace{b, b, \ldots, b,}_{n \text { times }} \underbrace{c, c, \ldots, c}_{n \text { times }} \text {, with } n>0
$$

variables: $N ; L$.
values: $a ; b ; c ; u$.
basic strings: $a ; b ; c$.
axiom: N.
meta-rules: $N \rightarrow u$

pseudo-rules: $\mathrm{N} \mapsto \mathrm{Na}, \mathrm{Nb}, \mathrm{Nc}$
$\mathrm{NuL} \mapsto \mathrm{NL}, \mathrm{L}$
$\mathrm{uL} \mapsto \mathrm{L}$
From the meta-rules and the pseudo-rules we can deduce the rules:
$u \Rightarrow u a, u b, u c$
$u u \Rightarrow$ uua, uub, uuc
uuu \Rightarrow uuua; uuub, uuuc
.....
uua \Rightarrow ua, \Rightarrow
$u u b \Rightarrow u b, b$
uuua \Rightarrow uua, a
[5] If r and s denote complex strings, than r, s denotes the complex string obtained by writing the complex string denoted by r, followed by a comma, on the left of the complex string denoted by s. Of course $r, \Lambda=\Lambda, r=\Lambda$ for any string r.
uuub \Rightarrow uub, b
$u a \Rightarrow a$
$u b \Longrightarrow b$
The axiomatic strings are:

$$
\begin{aligned}
& \text { u } \\
& \text { uu } \\
& \text { uuu } \\
& \ldots
\end{aligned}
$$

It is by considering each string as a symbol, and each complex string as a string of symbols, that we can conceive of the above rules as being "context-free"; and consequently we are able to draw the syntaxtic tree (fig. 1) corresponding to the derivation from uu into a, a, b, b, c, c.

It should be noted that the grammar not only defines the language L but also relates each element of the language to the axiomatic string(s) from which it is derived. The next example will illustrate this point.

Example 2 [6]
The following W-grammar describes all the arithmetical expressions which can be formed from the operands a, b, c and the operators $+,-, x, /, \uparrow$, , (. The axiomatic strings are all the corresponding arithmetical expressions written in Polish suffix notation. The sign Θ is used to denote the unary operator. Variables are represented by symbolic names in capital letters, and values by symbolic names in small letters or by signs. If there are several successive rules with the same left-hand member, then the member is not repeated after the first of the rules.

Basic strings: $a ; b ; c ;+;-x ; / ;) ;($.
Axiom: AXIOM

[^0]

Figure 2 shows how the axiomatic string " $a b+a b$ - x expression" is related to the arithmetic expression " $(, a,+b), x,,(, a,-, b)$,$" .$

Example 3

Our aim in this example is to emphasize how use can be made of the fact that W-grammars define a mapping from axiomatic strings to complex strings. If we use Chomsky's terminology ${ }^{4}$, each axiomatic string can be considered in some way representative of the deep structure of the corresponding completely derived complex strings, while the latter represent the surface structures. So we can say informally that W-grammars are capable of describing deep structures together with the transformations needed to rearrange them into surface structures.

Even though the following example does not claim to solve a linguistic problem, it is interesting for showing how two W-grammars, describing respectively a natural source language and a target one, can be linked in an automatic translation process. The reader will find much more sophisticated examples in 5 and 6 .

We must first assume that there exists a level of deep structure at which the structures are common to both languages. The idea then is to define two W-grammars such that they have a common set of axiomatic strings and such that these strings describe the deep structures just referred to. These axiomatic strings serve as an 'intermediate language'. So to translate a sentence, it is a matter of first analyzing it with the W-grammar of the source language, then taking the axiomatic strings that are obtained and generating from them the translation in the target language by means of the other W grammar. It follows that if the sentence to be translated has several interpretations according to the grammar, several axiomatic strings will be produced and several translations will result.

Below we give a W-grammar of English that describes sentences of the following four patterns and derives them from deep structures (i.e. axiomatic strings):

The boy gives a book to the girls

The boy gives the girls books The book is given to a girl by the boy The boy is given the books by a girl

Variations are possible in the choice of the nouns, of the definite or indefinite article, of the plural or the singular. Subsequently the W-grammar of French given further on synthesizes a French translation out of each axiomatic string. Figure 3 provides an example showing how these two ,grammars work when linked. It consists of a translation of the English sentence
"the boy is given books by a girl"
into the French sentence

Grammar of English

Pseudo-rules:

construction of the active form
SN1 actif V SN2 $\mathrm{CO} \stackrel{ }{\longmapsto}>$

construction of the passive form
SN2 passif V, CO , by , SN1
agreement of the subject with the verb
ART NOMBRE NOM , NOMBRE MODE v à SN \longmapsto to , SN

forms of the article and its agreement with a noun

$$
\text { def NOMBRE NOM } \rightarrow \text { the }, \text { NOMBRE NOM }
$$

$$
\text { indef sing } N O M \rightarrow a, \text { sing } \quad \text { NOM }
$$

$$
\text { indef plu NOM } \rightarrow \text { plu NOM }
$$

forms of the noun, and a part of lexicon

NOMBRE	mas livre	\longrightarrow NOMBRE	book
NOMBRE	mas garçon	\longmapsto NOMBRE	boy
NOMBRE	fem fille	\longrightarrow NOMBRE	gir1
	sing book	$\xrightarrow{\longrightarrow}$ book	
	plu book	\longmapsto books	
	sing boy	\longmapsto boy	
	plu boy	\longmapsto boys	
	sing girl	\longmapsto girl	
	plu girl	\longmapsto - girls	
	Grammar	of French	

Pseudo-rules:

```
construction of the active form
    SN actif V SN1 à SN2 \longmapsto>
            SN actif V , SN1 , à SN2
construction of the passive form
    SN passif V SN1 à SN2 \longmapsto>
            SN1 passif V , à SN2 , par, SN
subject-verb agreement
ART NOMBRE GENRE N MODE V }-
    ART NOMBRE GENRE N , NOMBRE GENRE MODE V
construction of the article eventually preceded
by the preposition à
```


construction of the verbal forms NOMBRE GENRE passif $V \longmapsto$

NOMBRE être, NOMBRE GENRE pp V
plu GENRE pp $V \longrightarrow$

construction of the noun

$$
\begin{array}{cccc}
\operatorname{sing} & N & \longmapsto & N \\
\text { plu } & N & \mathrm{~N} & \\
\hline
\end{array}
$$

Machine Implementation of W-grammars

We have written and tested programs [7] implementing W-grammars on a $\operatorname{CDC} 6400$. Our system consists essentially of an analyzer and a synthesizer; both are written in Algol 60.

The input of the analyzer is a complex string t, and its output consists of all the axiomatic strings s such that

$$
s \Longrightarrow t .
$$

Two restrictions are imposed:
a) if a variable occurs in the left-hand member of a pseudo-rule, it must also occur in the right-hand member;
b) there must be no infinite sequence of complex strings $\mathrm{r}_{1} ; \mathrm{r}_{2} ; \ldots$ such that

$$
\cdots \Rightarrow r_{2} \Rightarrow r_{1} \Rightarrow t .
$$

The input of the synthesizer is an axiomatic string s, and the output is the set of complex strings t such that
$s \Longrightarrow t$.
Two restrictions are imposed:
a) if a variable occurs in the right-hand member of a pseudo-rule, it must also occur in the left-hand member;
[7] With the assistance of G. Stewart and C. Springer.

b) there must be no infinite sequence of complex strings $r_{1} ; r_{2} ; \ldots$ such that
$\mathrm{t} \rightarrow \mathrm{r}_{1} \rightarrow \mathrm{r}_{2} \rightarrow \cdots$
With the present system we are able to run grammars having a maximum of around 300 rules altogether, including meta-rules and pseudorules. The maximum acceptable length of the input strings into either the analyzer or the synthesizer is about 30 symbols. The time required for processing such a string is approximately 1 minute 30 seconds. Obviously the efficiency of the programs could be greatly increased by using disks and machine language. However the present system was only intended to be experimental, and so we have not cared to optimize it.[8]

References

1. VAN WIJNGAARDEN, A. (ed.), Mailloux, B.J., Peck, J.E.L., Koster, C.H.A., Final Draft Report on the Algorithmic Language Algol 68, Amsterdam: Mathematisch Centrum, December 1968.
2. SINTZOFF, M., Existence of a Van Wijngaarden syntax for every recursive enumerable set, Annales de la Société Scientifique de Bruxelles, Bruxelles, 81, II (1967), pp. 115-118.
3. LEWIS, P.M., and STEARN, R.F., Syntax directed transduction, JACM, vol. 15, no.3, July 1968.
4. CHOMSKY, N., Three models for the description of language, I.R.E. Transactions on Information Theory, vol. IT-2, Proceedings of the Symposium on Information Theory, Sept. 1956.
5. GOPNIK, M., Relative Clauses, Recherche sur 1a traduction automatique, onzième rapport semestriel, Université de Montréal et Conseil National de la recherche, Montréal, October 1968.
6. Recherche sur la traduction automatique, douzième rapport semestriel, Université de Montréal et Conseil National de la Recherche, Montreal 1969. (In preparation)
[^1]
[^0]: [6]A similar example is given in ${ }^{3}$ to illustrate transduction grammars. There seems to be a connection between W-grammars and transduction grammars.

[^1]: [8] The authors wish to thank B. Harris for his help in preparing the English version of this paper.

