
Introspection Coefficient in Prolog?

Alain Colmerauer

June 2014

What is the introspection coefficient in Prolog?

I would like to write a Prolog programm U such that the query

:- solve(t,αP) (1)

generates the same substitutions as
:- t (2)

with program P . Here α is a function with codes the program P by a ground term. Let’s call the
pair (U,α) a universal pair.

Note that the query
:- solve(solve(t,αP),αU)

with programs U , generates the same substitutions as the query (1) with program U .
More generally

:-

n−1︷ ︸︸ ︷
solve(...solve(solve(t,αP)

n−1︷ ︸︸ ︷
,αU)...,αU) (3)

generates the same substitutions as (2).
Let dn denotes the time necessary for executing (3). Then the introspection coefficent for the

universal pair (U,α) is

C = lim
n→∞

dn
dn−1

(4)

We will exprimentally check that for a given P and a given t, the limit C does exist. If this is true
then all the different C schould be the same: as n increases, the number of instructions coming from
P becomes negligible to the number of instructions coming from U . That could be the explanation.

I describe now the universal pair. It uses direct access from litteral to the relevant clauses. I will
use the follwing built-in predicate:

• once(t1): the calling of t1 succeeds atmost once,

• univ(t1,t2), in fact t1=.. t2: if t1 is f(s1,...,sn) then t2 is [f,s1,...,sn] and vice-versa.

These built-in predicates are taken from the ISO international standard on Prolog. They are de-
scribed in the book Prolog: The Standart Reference Manual, by P. Deransart, A. Ed-Dbali and L.
Cervoni, Springer 1996. In this book Prolog is seen as a programming langage which manipulates
terms: ground or not ground.

It is easy to program the negation by failure, notprovable(t), and to write many other built-in
predicates. See Appendix 2.

1

Universal pair (U, α)

The coding function α produces the list

[gives(s1,q1),...,gives(sm,qm)].

The si’s are all the different signatures of the head of the clauses. The signature of a term of the
form f(t1,...,tn) is the term f([],...,[]) with n occurencies of []. The qi’s are the non-empty
sub-lists of all the coded clauses with signature si. Each coded clause is

• the term t0:- [q(t1,p1),...,q(tn,pn)] for the clause t0:- t1,...,tn,
the term t0:- [] for the clause t0,
where qi is the possibly empty sub-list of clauses which the same signature than ti;

• each occurrence of the functional symbol v of arity 1 is duplicated;

• each variable is replaced by the ground term v(variablename);

Thus many qi are infinite trees. The Prolog compiler should avoid the occur test. But there is no
necessity to be able to unify two infinite trees. The program U is in Appendix 1:

Because with use once(t) the order of the clauses is relevant but does not change the result
significally. We will do three tests:

• :- fail, with the empty program,

• :- even(s(s(o))), with the program

even(o).
even(s(N)) :- odd(N).
odd(s(N)) :- even(N).

• :- inlist(X,[a,b,c]), with the program

inlist(X,[X|L]).
inlist(X,[Xp|L]) :- inlist(X,L).

We obtain

:- fail

n di in secondes di
di−1

0 0.000009 −
1 0.000010 1.1
2 0.000295 29.5
3 0.019035 64.5
4 1.848905 97.1
5 191.280060 103.5

:- even(s(s(o)))

n di in seconds di
di−1

0 0.000022 −
1 0.000093 4.2
2 0.003961 42.6
3 0.378818 95.6
4 36.879262 97.4

:- inlist(X,[a,b,c])

n di in seconds di
di−1

0 0.000031 −
1 0.000138 4.5
2 0.014678 106.3
3 1.165718 79.4
4 120.073054 103.0

The coefficient of instrospection may exist and may be

C ≈ 100

It does not depend on the speed of the computer on which we do the tests but it depends on the
Prolog implementation. In our case we use a MacBook 13 inches manufactured end of 2008, running
under OS X 10.9.2. The Prolog compiler is SWI-Prolog-5.6.59.

2

Appendice 1: program U

/* Solve */

solve(T,E) :- once(appropriate(T,P,E)), kernelsolve(T,P,E).

/* Kernel solve */

kernelsolve(univ(T,Tp),[],E) :- univ(T,Tp).
kernelsolve(once(T),[],E) :- once(appropriate(T,P,E)), once(kernelsolve(T,P,E)).
kernelsolve(T,[C|P],E) :- solvenormal(T,[C|P],E).

appropriate(T,P,E) :- univ(T,[A|L]), erase(L,Lp), univ(Tp,[A|Lp]), search(d(Tp,P),E).

erase([],[]).
erase([T|L],[[]|Lp]) :- erase(L,Lp).

search(D,[D|Ep]).
search(D,[Dp|Ep]) :- search(D,Ep).
search(d(T,[]),[]).

/* Solve normal */

solvenormal(T,[(Tp:-Q)|P],E) :- once(instance(Tp,T,[],S)), solveinstances(Q,S,E).
solvenormal(T,[C|P],E) :- solvenormal(T,P,E).

solveinstances([],S,E).
solveinstances([q(T,P)|Q],S,E) :-

once(instance(T,Tp,S,Sp)), kernelsolve(Tp,P,E), solveinstances(Q,Sp,E).

/* Instance */

instance(v(v(T)),v(Tp),S,Sp) :- instance(T,Tp,S,Sp).
instance(v(X),T,S,Sp) :- instancevariable(X,T,S,S,Sp).
instance(T,Tp,S,Sp) :- univ(T,[I|Q]), instances(Q,Qp,S,Sp), univ(Tp,[I|Qp]).

instances([],[],S,S).
instances([T|Q],[Tp|Qp],S,Spp) :- once(instance(T,Tp,S,Sp)), instances(Q,Qp,Sp,Spp).

instancevariable(X,T,[],S,[gives(X,T)|S]).
instancevariable(X,T,[gives(X,T)|S],Sp,Sp).
instancevariable(X,T,[gives(Xp,Tp)|S],Sp,Spp) :- instancevariable(X,T,S,Sp,Spp).

3

Appendice 2 : other built-in predicates

/* Not provable */

notprovable(X) :- once(notp(Y)).

notp(X) :- once(X), fail.
notp(X).

/* Not unifiable terms */

notunifiable(T,Tp) :- notprovable(eg(T,Tp).

eq(T,T).

/* The term is a variable and the term is not a variable */

var(T) :- notprovable(notunifiable(T,yes))), notprovable(notunifiable(T,no))),

notvar(T) :- notprovable(var(T)).

/* Identical terms */

identical(T,Tp) :- var(T), var(Tp), identicalvariables(T,Tp).
identical(T,Tp) :- nonvar(T), nonvar(Tp), univ(T,[I|U]), univ(T,[I|Up])

identicallist([],[]).
identicallist([T|U],[Tp|Up]) :- identical(T,Tp), identicallist(U,Up).

identicalvariables(T,Tp) :- notprovable(duo(X,Y),duo(yes,no)).

4

