Introspection Coeflicient in Prolog?

Alain Colmerauer

June 2014

What is the introspection coefficient in Prolog?

I would like to write a Prolog programm U such that the query
:- solve(t,aP) (1)

generates the same substitutions as
-1 (2)

with program P. Here « is a function with codes the program P by a ground term. Let’s call the
pair (U,) a universal pair.
Note that the query
:- solve(solve(t,aP),al)

with programs U, generates the same substitutions as the query (1) with program U.
More generally

n—1 n—1

—_—~
:- solve(...solve(solve(t,aP) ,aU)...,al) (3)

generates the same substitutions as (2).
Let d,, denotes the time necessary for executing (3). Then the introspection coefficent for the
universal pair (U, «) is

(4)

We will exprimentally check that for a given P and a given ¢, the limit C' does exist. If this is true
then all the different C' schould be the same: as n increases, the number of instructions coming from
P becomes negligible to the number of instructions coming from U. That could be the explanation.

I describe now the universal pair. It uses direct access from litteral to the relevant clauses. I will
use the follwing built-in predicate:

e once(t1): the calling of ¢; succeeds atmost once,
e univ(ty,to), in fact t1=..to: if t1 is f(s1,...,8,) thentois [f,s1,...,5,] and vice-versa.

These built-in predicates are taken from the ISO international standard on Prolog. They are de-
scribed in the book Prolog: The Standart Reference Manual, by P. Deransart, A. Ed-Dbali and L.
Cervoni, Springer 1996. In this book Prolog is seen as a programming langage which manipulates
terms: ground or not ground.

It is easy to program the negation by failure, notprovable(t), and to write many other built-in
predicates. See Appendix 2.

Universal pair (U, «)

The coding function a produces the list

[gives(s1,q1), ... gives(Sm,qm)].

The s;’s are all the different signatures of the head of the clauses. The signature of a term of the
form f(t1,...,t,) is the term f([1,...,[]) with n occurencies of []. The g;’s are the non-empty
sub-lists of all the coded clauses with signature s;. Each coded clause is

e the term tg:- [q(t1,p1),...,q9(t,,pn)] for the clause to:- t1,...,tn,
the term tg:- [] for the clause t,
where ¢; is the possibly empty sub-list of clauses which the same signature than ¢;;

e each occurrence of the functional symbol v of arity 1 is duplicated;

e cach variable is replaced by the ground term v(variablename);

Thus many ¢; are infinite trees. The Prolog compiler should avoid the occur test. But there is no
necessity to be able to unify two infinite trees. The program U is in Appendix 1:

Because with use once(t) the order of the clauses is relevant but does not change the result
significally. We will do three tests:

e :- fail, with the empty program,
e :- even(s(s(0))), with the program

even(o).
even(s(N)) :- odd(N).
odd(s(N)) :- even(N).

e :- inlist(X, [a,b,c]), with the program

inlist (X, [XIL]).
inlist(X, [XpIL]) :- inlist(X,L).

We obtain
- fail .)
:- even(s(s(0))) :- inlist (X, [a,b,c])
iy d;

n dz in secondes di—l n dz in seconds ddll n dz in seconds ddll
(1) 8888828 1_1 0 0.000022 | — 0 0.000031 —
9 0.000295 | 295 1 0.000093 | 4.2 1 0.000138 | 4.5
3 0.019035 | 645 2 0.003961 | 42.6 2 0.014678 | 106.3
' ' 3 0.378818 | 95.6 3 1.165718 | 79.4
: 1848905 | 97.1 4 36.879262 | 97.4 41 120.073054 | 103.0

5 191.280060 | 103.5 : : : .

The coefficient of instrospection may exist and may be
C ~ 100

It does not depend on the speed of the computer on which we do the tests but it depends on the
Prolog implementation. In our case we use a MacBook 13 inches manufactured end of 2008, running
under OS X 10.9.2. The Prolog compiler is SWI-Prolog-5.6.59.

Appendice 1: program U

/* Solve x/

solve(T,E) :- once(appropriate(T,P,E)), kernelsolve(T,P,E).
/* Kernel solve */

kernelsolve(univ(T,Tp), [1,E) :- univ(T,Tp).
kernelsolve(once(T), [],E) :- once(appropriate(T,P,E)), once(kernelsolve(T,P,E)).
kernelsolve(T, [CIP],E) :- solvenormal(T, [CI|P],E).

appropriate(T,P,E) :- univ(T,[A|L]), erase(L,Lp), univ(Tp, [AlLp]l), search(d(Tp,P),E).

erase([],[]).
erase([TIL],[[]ILp]) :- erase(L,Lp).

search(D, [D|Ep]).
search(D, [Dpl|Ep]) :- search(D,Ep).
search(d(T, [1),[1).

/* Solve normal */

solvenormal (T, [(Tp:-Q) |P],E) :- once(instance(Tp,T,[],S)), solveinstances(Q,S,E).
solvenormal (T, [C|P],E) :- solvenormal(T,P,E).

solveinstances([],S,E).
solveinstances([q(T,P)IQ],S,E) :-
once(instance(T,Tp,S,Sp)), kernelsolve(Tp,P,E), solveinstances(Q,Sp,E).

/* Instance */

instance (v(v(T)),v(Tp),S,Sp) :- instance(T,Tp,S,Sp).
instance(v(X),T,S,Sp) :- instancevariable(X,T,S,S,Sp).
instance(T,Tp,S,Sp) :- univ(T,[I|Q]), instances(Q,Qp,S,Sp), univ(Tp, [IIQp]l).

instances([],[],S,9).
instances([TIQ], [TplQp]l,S,Spp) :- once(instance(T,Tp,S,Sp)), instances(Q,Qp,Sp,Spp).

instancevariable(X,T, [],S, [gives(X,T) |S]).
instancevariable(X,T, [gives(X,T) |S],Sp,Sp).
instancevariable(X,T, [gives (Xp,Tp) IS],Sp,Spp) :- instancevariable(X,T,S,Sp,Spp).

Appendice 2 : other built-in predicates

/* Not provable */
notprovable(X) :- once(notp(Y)).

notp(X) :- once(X), fail.
notp(X) .

/* Not unifiable terms */

notunifiable(T,Tp) :- notprovable(eg(T,Tp).

eq(T,T).

/* The term is a variable and the term is not a variable */

var(T) :- notprovable(notunifiable(T,yes))), notprovable(notunifiable(T,no))),
notvar(T) :- notprovable(var(T)).

/* Identical terms */

identical(T,Tp) :- var(T), var(Tp), identicalvariables(T,Tp).
identical(T,Tp) :- nonvar(T), nonvar(Tp), univ(T,[I|U]), univ(T, [I|Up])

identicallist([],[]1).
identicallist([T|U], [TplUpl) :- identical(T,Tp), identicallist(U,Up).

identicalvariables(T,Tp) :- notprovable(duo(X,Y),duo(yes,no)).

