
Back to the complexity of universal programs

Alain Colmerauer

Marseilles, France

Abstract. I start with three examples illustrating my contribution to
constraint programming: the problem of cutting a rectangle into different
squares in Prolog III, a complicated constraint for Prolog IV, the opti-
mal narrowing of the sortedness constraint. Then I switch to something
quite different: to machines, in particular to Turing machines. After the
declarative aspect, the basic computational aspect!

The paper provides a framework enabling to define and determine the
complexity of various universal programs U for various machines. The
approach consists of first defining the complexity as the average number
of instructions to be executed by U , when simulating the execution of
one instruction of a program P with input x.

To obtain a complexity that does not depend on P or x, we introduce
the concept of an introspection coefficient expressing the average number
of instructions executed by U , for simulating the execution of one of its
own instructions. We show how to obtain this coefficient by computing
a square matrix whose elements are numbers of executed instructions
when running selected parts of U on selected data. The coefficient then
becomes the greatest eigenvalue of the matrix.

We illustrate the approach using two examples of particularly efficient
universal programs: one for a three-symbol Turing Machine (blank sym-
bol not included) with an introspection coefficient of 3 672.98, the other
for an indirect addressing arithmetic machine with an introspection co-
efficient of 26.27.

1 Preface

Let us review my contribution to constraint programming.

1.1 Around 1985

Around 1985 I was interested by constraints, more precisely by numerical linear
constraints, by Boolean algebra and by list constraints. That’s how Prolog III
was born [2]. A good example of a program consists in cutting a rectangle of
unknown size into n different squares also of unknown sizes. For n = 9 the

2

following result holds:

15
18

8 7
4

14

1

109

33
36

28

5
2

9

25

7

16

Here is the program, written in the syntax of Prolog IV. The height of the
rectangle to be cut is assumed to be 1, which is not a restriction:

rectangle(A,C) :- area([V|L],[V|L],C,C) :-
gelin(A,1), gelin(V,0).
distinctSizes(C), area([V|L],Lppp,[B|C],Cpp) :-
area([-1,A,1],L,C,[]). lt(V,0),

square(B,L,Lp),
distinctSizes([]). area(Lp,Lpp,C,Cp),
distinctSizes([B|C]) :- area([V+B,B|Lpp],Lppp,Cp,Cpp).

gtlin(B,0),
distinctSizes(C), square(B,[H,0,Hp|L],Lp) :-
out(B,C). gtlin(B,H),

square(B,[H+Hp|L],Lp).
out(B,[]). square(B,[H,V|L],[-B+V|L]) :-
out(B,[Bp|C]) :- B = H.

dif(B,Bp), square(B,[H|L],[-B,H-B|L]) :-
out(B,C). ltlin(B,H).

The predicates gelin(x, y), gtlin(x, y), ltlin(x, y) correspond to the linear con-
straints x ≥ y, x > y, x < y and dif(x, y) to the constraint x 6= y. We leave the
program uncommented. It is sufficient to ask the query

>> size(C)=9, rectangle(A,C).

where size(x) = y means size of the list x is y, to obtain

A = 33/32,
C = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32];
A = 69/61,
C = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61];

3

A = 33/32,
C = [9/16,15/32,7/32,1/4,7/16,1/8,5/16,1/32,9/32];
A = 69/61,
C = [36/61,33/61,5/61,28/61,25/61,9/61,2/61,7/61,16/61];

A = 33/32,
C = [9/32,5/16,7/16,1/4,1/32,7/32,1/8,9/16,15/32];
A = 69/61,
C = [28/61,16/61,25/61,7/61,9/61,5/61,2/61,36/61,33/61];

A = 69/61,
C = [25/61,16/61,28/61,9/61,7/61,2/61,5/61,36/61,33/61];
A = 33/32,
C = [7/16,5/16,9/32,1/32,1/4,1/8,7/32,9/16,15/32].

1.2 Around 1990

Prolog IV was finished in 1995 [3]. In addition to the constraints of Prolog III,
it includes numerical non-linear constraints which are approximately solved by
narrowing of intervals. It also includes the existential quantifier. Here, on the left
column, is a constraint in the usual notation and the value of the free variable
y. The formula (x > y) denotes the Boolean value true ou false. On the right
column you find the corresponding query and the answer in Prolog IV.

∃u∃v∃w∃x



y ≤ 5
∧ v1 = cos v4

∧ size(u) = 3
∧ size(v) = 10
∧ u • v = v • w
∧ y ≥ 2 + (3× x)
∧ x = (74>b100×v1c)


y = 5

>> U ex V ex W ex X ex
le(Y,5),
V:1 = cos(V:4),
size(U) = 3,
size(V) = 10,
U o V = V o W,
ge(Y,2.+.(3.*.X)),
X = bgt(74,floor(100.*.V:1)).

Y = 5.

1.3 Around 2000

Having been interested by the narrowing of intervals, I focused on a particular
instance, the sortedness constraint:

sort(x1, . . . , xn, xn+1, . . . , x2n) ≡


(xn+1, . . . , x2n)
is equal to
(x1, . . . , xn) sorted
in non-decreasing order.

With Noëlle Bleuzen [1], a colleague from the department of Mathematics, we de-
veloped an algorithm of complexity O(n log n) to compute the smallest intervals

4

a′i from the intervals ai such that:

sort(x1, . . . , x2n) ∧ x1 ∈ a1 ∧ · · · ∧ x2n ∈ a2n

≡
sort(x1, . . . , x2n) ∧ x1 ∈ a′1 ∧ · · · ∧ x2n ∈ a′2n

For 2n = 22 for example, we obtain:

=⇒

and for 2n = 100:

⇒

2 Introduction

In parallel, around 2000, I was teaching an introductory course designed to ini-
tiate undergraduate students to low level programming. My approach was to
start teaching them how to program Turing machines. The main exercise in the

5

course consisted of completing and testing a universal program whose architec-
ture I provided. The results were disappointing, the universal program being too
slow for executing sizeable programs. Among others it was impossible to run
the machine on its own code, in the sense explained in section 4. In subsequent
years, I succeeded in designing considerably more efficient universal programs,
even though they became increasingly more complex. These improved programs
were capable to execute their own code in a reasonable time. To simulate the
execution of one of its own instructions, the last program executes an average
number of 3 672.98 instructions. That is the introspection coefficient, a key con-
cept of this paper.

The rest of this paper presents this result in a more general context con-
cerning machines other than Turing machines. Section 2 is this introduction. In
Section 3, we formally define the concepts of programmed machine, machine,
program, transition and instruction. We illustrate this on a Turing machine, and
on an indirect addressing arithmetic machine. In Section 4, we introduce the
universal pair, program and coding function. We mention the theorem on how
to check the existence of its introspection coefficients and how to compute its
value. We omit the proof and refer the reader to [4]. Sections 5 and 6 and also
Sections 8, 9, 10 are devoted to two specially efficient universal programs: the
first one, as already mentioned, for a Turing machine, the second one for an
indirect addressing arithmetic machine. In Section 7 we conclude about a lack
of restriction of our definition of the introspection coefficient.

We are not aware of other work on the design of efficient universal programs.
Let us however mention the well known contributions of M. Minsky [5] and Y.
Rogozin [7] in the design of universal programs for Turing machines with very
small numbers of states. Surprisingly, they seem particularly inefficient in terms
of the number of executed instructions.

3 Machines

3.1 Basic definitions

Definition 1 A machine M is a 5-tuple (Σ,C, α, ω, I), where

Σ, the alphabet of M , is a finite not empty set;
C, is a set, generally infinite, of configurations; the ordered pairs (c, c′) of ele-

ments of C are called transitions;
α, the input function, maps each element x of Σ? to a configuration α(x);
ω, the ouput function, maps each configuration c to an element ω(c) of Σ?;
I, is a countable set of instructions, an intruction being a set of compatibles

transitions, i.e., whose first components are all distinct.

Definition 2 A program P for a machine M is a finite subset of the instruc-
tions set I of M , such that the transitions of

⋃
P are compatible.1

1 P being a set of sets
⋃

P denotes the set of elements which are member of at least
one element of P and thus the set of transitions involved in program P .

6

3.2 How a machine operates

Let M = (Σ,C, α, ω, I) be a machine and P a program for M . The operation of
the machine (M,P) is explained by the diagram:

x y
↓ ↑
c0 −→ c1 −→ c2 · · · cn−1 −→ cn

and more precisely by the definition of the following functions2, where x is a
word on Σ:

orbitM (P, x) =
{

the longest sequence (c0, c1) (c1, c2) (c2, c3) . . . with
c0 = α(x) and each (ci, ci+1) an element of

⋃
P .

outM (P, x) =

{
↗, if orbit(P, x) is infinite,

ω(cn), if orbit(P, x) ends with (cn−1, cn)

.

3.3 Example: Turing machines

Informally these are classical Turing machines with a bi-infinite tape and in-
structions written [qi, abd, qj], with d = L or d = R, meaning : if the machine
is in state qi and the symbol read by the read-write head is a, the machine re-
places a by b, then moves its head one symbol to the left or the right, depending
whether d = L or d = R, and change its state to qj .

In fact we consider a variant of the Turing machines described above with
an internal moving head direction whose initial value is equal to left-right. The
instructions are written [qi, abs, qj], with s = + or s = −, meaning : if the
machine is in state qi and the symbol read by the read-write head is a, the
machine replaces a by b, keeps its internal direction or changes it depending
whether s = + or s = −, moves its read-write head one symbol in the new
internal direction, and changes its states to qj .

Initially the entire tape is filled with blanks except for a finite portion which
contains the initial input, the read-write head being positioned on the symbol
which precedes this input. When there are no more instructions to be executed
the machine output the longest word which contains no blank symbols and which
starts just after the position of the read-write head.

Formally one first introduces an infinite countable set {q1, q2, . . .} of states
and a special symbol u, the blank. For any alphabet word x on an alphabet of
the form Σ ∪ {u}, one writes ·x for x, with all its beginning blanks erased, and
x· for x, with all its ending blanks erased.

Definition 3 A Turing machine is a 5-tuple of the form (Σ, C, α, ω, I) where,

– Σ is a finite set not having u as an element,
2 Index M is omitted when there is no ambiguity.

7

– C is the set of 5-tuples of the form [d, qi, ·x, a, y·], with d ∈ {L, R}, qi being
a state, x, y taken from Σ?

u and a taken from Σu, where Σu = Σ ∪ {u},
– α(x) = [R, q1, ε, u, x], for all x ∈ Σ?,
– ω([d, qi, ·x, a, y·]) is the longest element of Σ? beginning y·,
– I is the set of instruction denoted and defined, for all states qi, qj, all ele-

ments a, b of Σu and all s ∈ {+,−}, by

[qi, abs, qj]
def
=

{([d, qi, ·xc, a, y·], [L, qj , ·x, c, by·]) | (d, s) ∈ E1 and (x, c, y) ∈ F}}∪
{([d, qi, ·x, a, cy·], [R, qj , ·xb, c, y·]) | (d, s) ∈ E2 and (x, c, y) ∈ F},
with E1 = {(L,+), (R,−)}, E2 = {(R,+), (L,−)} and F = Σ?

u ×Σu ×Σ?
u.

3.4 Example: Indirect addressing arithmetic machine

This is a machine with an infinity of registers r0, r1, r2, Each register con-
tains an unbounded natural integer. Each instruction starts with a number and
the machine always executes the instruction whose number is contained in r0

and, except in one case, increases r0 by 1. There are five types of instructions:
assigning a constant to a register, addition and subtraction of a register to/from
another, two types of indirect assignment of a register to another and zero-testing
of a register content.

More precisely and in accordance with our definition of a machine:

Definition 4 An indirect addressing arithmetic machine is a 5-tuple of the form
(Σ, C, α, ω, I), where,

– Σ = {c1, . . . , cm}, where the ci are any symbols,
– C is the set of infinite sequences r = (r0, r1, r2, . . .) of natural integers,
– α(a1 . . . an) = (0, 25, 1, . . . , 1, r24+1, . . . , r24+n, 0, 0, . . .), with r24+i equal to 1, . . . ,m

depending whether ai equals c1, . . . , cm,
– ω(r0, r1, . . .) = a1 . . . an, with ai equal to c1, . . . , cm depending whether rr1+i

equals 1, . . . ,m, and n being is the greatest integer such that rr1 , . . . , rr1+n

are elements of {1, . . . ,m},
– I is the set of instructions denoted and defined, for all natural integers i, j, k,

by:

[i, cst , j, k]
def
= {(r, s) ∈ C2 | r0 = i,s := r, sj := k, s0 := s0 + 1},

[i, plus, j, k]
def
= {(r, s) ∈ C2 | r0 = i,s := r, sj := sj +sk, s0 := s0 + 1},

[i, sub, j, k]
def
= {(r, t) ∈ C2 | r0 = i, s := r, sj := sj÷sk, s0 := s0 + 1},

[i, from, j, k]
def
= {(r, t) ∈ C2 | r0 = i, s := r, sj := ssk

, s0 := s0 + 1},

[i, to, j, k]
def
= {(r, t) ∈ C2 | r0 = i, s := r, srj = rk, s0 := s0 + 1},

[i, ifze, j, k]
def
= {(r, t) ∈ C2 | r0 = i, s := r, s0 :=

[
sk + 1, if sj = 0
s0 + 1, if sj 6= 0

]
}.

Here sj ÷ sj stands for max{0, sj−sk}.

8

4 Universal program and universal coding

4.1 Universal pair

Let M = (Σ, C, α, ω, I) be a machine and let us code each program P for M by
a word code(P) on Σ.

Definition 5 The pair (U, code), the program U and the coding function code,
are said to be universal for M , if, for all programs P of M and for all x ∈ Σ?,

out(U, code(P) · x) = out(P, x). (1)

If in the above formula we replace P by U , and x by code(U)n · x we obtain:

out(U, code(U)n+1 · x) = out(U, code(U)n · x)

and thus:

Property 1 If (U, code) is a universal pair, then for all n ≥ 0 and x ∈ Σ?,

out(U, code(U)n · x) = out(U, x). (2)

4.2 Introspection coefficient

Let (U, code) be a universal pair for the machine M = (Σ, C, α, ω, I). The com-
plexity of this pair is the average number of transitions performed by U for
producing the same effect as a transition of the program P occurring in the
input of U . More precisely:

Definition 6 Given a program P for M and a word x on Σ with orbit(P, x) 6=
↗, the complexity of (U, code) is the real number defined by

|orbit(U, code(P) · x)|
|orbit(P, x)|

.

The disadvantage of this definition is that the complexity depends on the input
of U . For an intrinsic complexity, independently of the input of U , we introduce
the introspection coefficient of (U, code) whose definition is justified by Property
2:

Definition 7 If for all x ∈ Σ?, with orbit(U, x) 6= ↗, the real number

lim
n→∞

|orbit(U, code(U)n+1 · x)|
|orbit(U, code(U)n · x)|

exists and does not depend on x, then this real number is the introspection
coefficient of the universal pair (U, code).

9

4.3 Existence and value of the introspection coefficient

Let (U, code) be a universal pair for a machine M = (Σ, C, α, ω, I). Given a word
x on Σ, we assume that the computation of the word y by y = out(U, x) can be
synchronized with the computation of the same word y by y = out(U, code(U) ·
x), according to the following diagram:

x y
↓ ↑

code(U)·x •
1

−−−−→•
2

−−−−→•
2

−−−−→•
1

−−−−→•
3

−−−−→• y
↓ ↓ ↓ ↓ ↓ ↓ ↘ ↑
• 1→ 1→ 4→• 3→ 1→ • 2→ 3→ 3→• 2→ 3→ 3→• 3→ 1→ • 3→ 3→ 1→ 5→ 5→ •

More precisely we make the hypothesis:

Hypothesis 1 There exists n,nb,A,B such that, for every pair of traces of the
form

(orbit(U, code(U)·x, orbit(U, x)))

itself of the form
(s1 · · · sl, r1 · · · rk),

we have
nb(s1) · · ·nb(sl) = B · A(nb(r1)) · · · A(nb(rk)),

with n positive integer, with nb(t) ∈ 1..n for each transition t of U , with A(i) a
finite sequence on 1..n for each i ∈ 1..n, with B a finite sequence on 1..n.

We then introduce the column vector B and the square matrix A:

B =

b1

...
bn

 , bi = number of occurrences of integer i in B,

A =

a11 · · · ann

...
...

a1n· · · ann

 , aij = number of occurrences of integer i in A(j).

(3)

and we conclude by the theorem, where ||X|| denotes the sum of the components
of X:

Theorem 1 Suppose the matrix A admits a real eigenvalue λ, whose multiplicity
is equal to 1, which is strictly greater to 1 and to the greatest modulus λ′ of the
other eigenvalue.

If α is a real number with λ′ < α < λ, if X0 = B and Xn+1 = 1
αAXn, then,

when n →∞, exactly one of the two properties holds:

1. ||Xn|| → 0,
2. ||Xn|| → ∞. In this case λ is the inspection coefficient.

Anyone interested in more details may consult [4].

10

5 Universal pair for the Turing machine

5.1 The universal pair

We now present a particularly efficient universal pair (U, code) for the Turing
machine M with alphabet Σ = {o, i, z}. The program U has 184 instructions
and 54 states and |code(U)| = 1552. Its listing and its graph can be seen in the
annexes of Sections 8 and 9.

5.2 Coding function of the universal pair

Let P be a program for M . We take code(P) as the word on {o, i, z}

code(P) = zI4nz . . . zIk+1zIkzIk−1z . . . zI1zoi . . . izz.

Integer n is the number of states of P and the Ik are the coded instructions. The
size of the shuttle oi . . . iz is equal to the longest size of the Ik minus 5.

In order to assign a position to each coded instruction Ik of [qi, abs, qj], we
introduce the number:

π(i, a) = 4(i− 1) +


1, if a = u
2, if a = o
3, if a = i
4, if a = z

.

For all a ∈ Σu and i ∈ 1..n,

Iπ(i,a) =

{
[qi, abs, qj], if there exists b, s, j with [qi, abs, qj] ∈ P ,

oi, otherwise,

– with [qi, a, b, s, qj] =

{
iam . . . a2o, if π(i, a) < 1

2 (π(j, u) + π(j, z)),

oa2 . . . ami, if π(i, a) > 1
2 (π(j, u) + π(j, z)),

,

– with a2a3 equal to io, oi, ii, depending whether b equals u, o, i, z,
– with a4 = o or a4 = i depending whether s = + or s = − and
– with iam . . . a5 a binary number (o for 0 and i for 1) whose value is equal

to |π(j)− π(i, a)|+ 3
2 .

5.3 Operation of the universal pair

As already mentioned, the program U has 54 states, q1, . . . , q54, and 184 instruc-
tions. These instructions are divided in 10 modules A,B,C, . . . , J organized as

11

follows:

I
N
S
T
R
U
C
T
I
O
N

L
O
C
A
L
I
Z
A
T
I
O
N

I
N
S
T
R
U
C
T
I
O
N

E
X
E
C
U
T
I
O
N

0 1

2

3

5

4

6

7

8 9A Start

B Shuttle
direction
updating

C Shuttle
counter

initialization

D Writing,
moving,
reading

E Shuttle
counter
updating

F Moving
shuttle

to next z

G Shuttle
counter

decreasing

H Shuttle
reversing

I Instruc-
tion orien
tation test

J End

The numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 denote respectively the states q1, q24, q35,
q43, q49, q15, q13, q7, q10, q23. They are called X0, X2, . . . , X9 in the program
U in the annex, Section 8. In the annex, Section 9, we also give a graph whose
vertices are the states and the edges the instructions of U : each instruction
[qi, abs, qj] is represented by an arrow, labeled abs, going from qi to qj . Note
that the vertices a, b, c and 7 have two occurrences which must be merged.

Initial configurations Initially the machines executing P is in the configura-
tion

. . . uu

↑
R q1 P

x uu . . .

and the machine executing U is in the correponding initial configuration
code(P)︷ ︸︸ ︷

. . . uu

↑
R q1 P

|zI4nz . . . zIk+1zIkzIk−1z . . . zI1zoi . . . izz| x |uu . . .︸ ︷︷ ︸
shuttle

While the machine executing P performs no transitions, the machine executing
U performs a sequence of initial transitions, always the same, involving the
instructions of module A and some instructions already there in the modules
I,H, G, F . Then the machines executing P and U end up respectively in the
following current configurations with k = 1:

12

Current configurations While the machine executing P is in the current
configuration

v a

↑
d qi P

w

the machine executing U is in the corresponding current configuration

standard shuttle︷ ︸︸ ︷
v |uzzI4nz . . . zIk+1z

↑
L q24 U

Ikzd′u . . . uzIk−1z . . . zI1zu| w
(4)

or
reversed shuttle︷ ︸︸ ︷

v |uzzI4nz · · · zIk+1zu . . . ud′z

↑
R q22 U

IkzIk−1z · · · zI1zu| w
(5)

depending whether Ik, with k = π(i, a), is in the standard form iam . . . a2o or
in the reversed form iam . . . a2o. The read-write points to a3 or to the z which
follows Ik when Ik is the empty instruction oi. Depending whether d is equal to
L or R, the symbol d′ is equal to u or o, if Ik is standard, and to o or u, if Ik is
reversed.

While the current configuration of P is not final, P performs one transition for
reaching the next current configuration and U performs a sequence of transitions
for reaching the next corresponding current configuration. More precisely, using
the information contained in Ik, the program U

– updates the internal direction contained in the shuttle (module B),
– transfers in the shuttle the binary number serving as basis for computing the

number of instructions to be jumped toward the left or the right, depending
on whether the shuttle is standard or reversed (module C),

– simulates the writing of a symbol, the read-write head move, and then the
reading of a new symbol (module D),

– taking into account the read symbol, updates the binary number contained in
the shuttle in order to obtain the right number of instructions to be jumped
by the shuttle for reaching the next instruction to be executed (module E),

– moves the shuttle and eventually reverses it, for correctly positioning it
alongside the next instruction to be executed (modules F,G, H, I).

When the current configuration of P becomes final, the corresponding current
configuration of U is of the form (5) with Ik equal to the empty instruction
oi. Then U performs a sequence of transitions (module J) for reaching the
final corresponding configurations. The machines executing P and U end up
respectively in the following final configurations:

13

Final configurations While the machine executing P terminates in the final
configuration

b

↑
d qm P

y u

the machine executing U terminates in the corresponding final configuration

uzzI4nz · · · zIk+1zu . . . ud′zIkzIk−1z · · · zI1zu

↑
R q23 U

y u

with Ik = oi, k = π(m, b) and d′ equal to o or u, depending whether d equals L
or R.

5.4 Introspection coefficient of our pair for the Turing machine

First we have chosen a reversing program P such that, for all n ≥, one gets
out(P, a1a2 . . . an) = an . . . a2a1, with the ai taken from {o, i, z}. The program
P has 32 instructions and 9 states. We have |code(P)| = 265 and |code(U)| =
1552. We obtain the following results for the pair (U, code):

x |orbit(P, x)|
|orbit(U,

code(P)·x)|
|orbit(U,

code(U)·code(P)·x)|
|orbit(U, code(U)·code(P)·x)|

|orbit(U, code(P)·x)|

ε 2 5 927 22 974 203 3 876.19
o 6 13 335 51 436 123 3 857.23
oi 12 23 095 88 887 191 3 848.76
oiz 20 35 377 136 067 693 3 846.22
oizo 30 49 663 190 667 285 3 839.22

It can be seen that we have succeeded in running the universal program U on
its own code and thus to compute a first approximation of the introspection
coefficient.

Second, after having computed the column vector B of size 184 × 4 = 736
and the matrix A of size 736, using Theorem 1, we have verified that U admits
an introspection coefficient and computed its value: for all words x on Σ such
that orbit(P, x) 6= ↗,

lim
n→∞

|orbit(U, code1(U)n+1 ·x)|
|orbit(U, code(U)n ·x)|

= 3672.98

Anyone interested in more details may consult [4]. There, it is also proven that
a more classical Turing machine, with 361 instructions and 106 states, has the
same introspection coefficient.

14

6 Universal pair for the indirect addressing arithmetic
machine

6.1 The universal pair

It is interesting to compare the complexities of our universal program for a Turing
machine with the complexity of a universal program for the indirect addressing
arithmetic machine with same alphabet Σ = {c1, c2, c3}, with c1 = o, c2 = i
and c3 = z. We have written such a universal program U using 103 instructions
and with |code(U)| = 1042. It can be seen in the appendices, Section 10.

6.2 Operation of the universal pair

The universal pair (U, code) for arithmetic machine with indirect addressing
operates roughly as following:

Current configuration

r0 r1 r2

0 3 2

Corresponding configuration

r0 r1 r2

50 code(P) 0 3 2

Execution of one instruc-
tion of

P =



[0, plus, 2, 1],
[1, cst , 11, 1],
[2, from, 5, 2],
[3, ifze, 5, 8],
[4, sub, 5, 11],
[5, to, 2, 5],
[6, plus, 2, 11],
[7, cst , 0, 1]



Execution of several correspond-
ing instruction of

U =



[0, cst , 8, 0],
[1, cst , 10, 2],
[2, cst , 11, 11],
. . .
[99, cst , 0, 49],
[100, plus, 9, 1],
[101, from, 9, 9],
[102, plus, 1, 9]


Next configuration

r0 r1 r2

1 3 5

Corresponding configuration

r0 r1 r2

50 code(P) 1 3 5

6.3 Introspection coefficient of our pair for the indirect addressing
machine

On particular examples we obtain the following results:

x |orbit(P, x)|
|orbit(U,

code(P)·x)|
|orbit(U,

code(U)·code(P)·x)|
|orbit(U, code(U)·code(P)·x)|

|orbit(U, code(P)·x)|

ε 12 2 372 72 110 30.40
o 16 2 473 74 758 30.23
oi 31 2 860 84 916 29.69
oiz 35 2 961 87 564 29.57
oizo 50 3 348 97 722 29.19

15

where P is a reversing program of 21 instructions, with |code(P)| = 216, such
that, for all n ≥ 0 one obtains out(P, a1a2 . . . an) = an . . . a2a1, with the ai

taken from {o, i, z}. The introspection coefficient obtained is:

lim
n→∞

|orbit(U, code(U)n+1 ·x)|
|orbit(U, code(U)n · x)|

= 26.27

Anyone interested in more details may consult [4].

7 Conclusion

Unless one “cheats”, it is difficult to improve the introspection coefficient of
our universal Turing machine which took us a considerable effort to develop.
Suppose, which is the case, that we have at our disposal a first universal pair
(U, code) for a Turing machine.

A first way of cheating consists of constructing the pair (U, code ′) from the
universal pair (U, code), with

code ′(P) =
{

ε, if P = U ,
code(P), if P 6= U .

Then we have
|orbit(U, code′(Un+1·x)|
|orbit(U, code′(U)n·x)| = |orbit(U, x)|

|orbit(U, x)| = 1

and (U, code ′) is a universal pair with an introspection coefficient equal to 1.
There is a second more sophisticated way of cheating, without modifying

the coding function code. Starting from the universal program U we construct a
program U ′, which, after having erased as many times as possible a given word z
occurring as prefix of the input, behaves as U on the remaining input. According
to the recursion theorem [6, 8], it is possible to take z equal to code(U ′) and thus
to obtain a universal program U ′ such that, for all y ∈ Σ? having not code(U)′

as prefix,
orbit(U ′, code(U ′)n · y) = nk1 + k2(y),

where k1 and k2(y) are positive integers, with k1 being independent of y. Then
we have

|orbit(U ′, code(U ′)n+1·y)|
|orbit(U ′, code(U ′)n·y)| = |orbit(U, x)|+(n+1)k1+k2(y)

|orbit(U, x)|+nk1+k2(y) =

1 + k1
|orbit(U, x)|+k2(y)+nk1

.

By letting n tend toward infinity we obtain an introspection coefficient equal to
1 for the pair (U ′, code).

Unfortunately our introspection coefficient definition, page 8, does not disal-
low these two kinds of cheating. What one really would like to prevent is that
the function code or the program U “behaves differently” on the program P ,
depending whether P is or is not equal to U . It is an open problem to express
this restriction in the definition of the introspection coefficient.

16

Finally we would like to mention that we tested our universal programs with a
package written in maple 8. In each case this package was also used to calculate
and manipulate the matrix A and the vectors B. Notably it was used to compute
the eigenvalues of A to obtain the introspection coefficient.

References

1. Noëlle Bleuzen and Alain Colmerauer, Optimal Narrowing of a Block of Sortings in
Optimal time, Constaints, 5(1-2), pp 85-118, 2000. A preliminary version is available
in http://alain.colmerauer@free.fr.

2. Alain Colmerauer, An Introduction to Prolog III, Communications of
the ACM, 33(7): 68-90, 1990. A preliminary version is available in
http://alain.colmerauer@free.fr.

3. Alain Colmerauer, Prolog IV, 1995, htp://alain.colmerauer@free.fr.
4. Alain Colmerauer, On the complexity of universal programs, Machine, Computa-

tions and Universality (Saint-Petersburg 2004). Lecture Notes in Computer, pp 18-
35, 2005. A preliminary version is available in http://alain.colmerauer@free.fr.

5. Marvin Minsky, Computations: Finite and Infinite Machines, Prentice-Hall, 1967.
6. Hartley Rogers, Theory of Recursive Functions and Effective Computability,

McGraw-Hill, 1967, also MIT Press, fifth printing, 2002.
7. Yurii Rogozin, Small universal Turing machines, Theoretical Computer Science, Vol-

ume 168, number 2, november 1996.
8. Michael Sipser, Introduction to the Theory of Computation, PWS Publishing Com-

pany, 1997.

17

8 Annex: Universal Turing program

A BEGINNING
[X0,uz+,A1], [X0,oo+,A1], [X0,ii+,A1], [X0,zu-,X7],

[A1,oo+,A1], [A1,ii+,A1], [A1,zz+,X0],
[X7,zz+,X8],

B INSTRUCTION TAIL COPYING
[X1,oo+,B1], [X1,ii+,B1],
[B1,oo+,B5], [B1,iu-,B2],
[B2,oo+,B2], [B2,ii+,B2], [B2,zz+,B3],
[B3,oi-,B4i], [B3,io-,B4i],

[B4o,uo+,B5], [B4o,oo+,B4o], [B4o,ii+,B4o], [B4o,zz+,B4o],
[B4i,ui+,B5], [B4i,oo+,B4i], [B4i,ii+,B4i], [B4i,zz+,B4i],
[B5,uu-,B6], [B5,ou-,B4o], [B5,iu-,B4i], [B5,zz-,B7],

[B6,oo+,B4o], [B6,ii+,B4i],
Replacement of the remaining u’s by o’s
[B7,uo+,B9], [B7,oo+,B7], [B7,ii+,B7], [B7,zz+,B7],
[B9,uo+,B9], [B9,oo+,X2], [B9,zz-,B10],

[B10,oo+,B10], [B10,ii+,B10], [B10,zz+,B9],

C INSTRUCTION HEAD COPYING
Creating the symbol to be written

[X2,oo+,C2], [X2,iu-,C1],
[C1,ui+,C2], [C1,oi+,C1], [C1,io+,C1], [C1,zu-,C1],

[C2,oo-,C3o], [C2,ii-,C3i],
[C3o,uo+,C4], [C3o,oo+,C3o], [C3o,ii+,C3o], [C3o,zu+,C4],
[C3i,uz+,C4], [C3i,oo+,C3i], [C3i,ii+,C3i], [C3i,zi+,C4],
Taking in account the direction

[C4,oi-,C5], [C4,ii-,X3],
[C5,uu+,C6], [C5,oo+,C6], [C5,ii+,C6], [C5,zz+,C6],

[C6,oo-,X3],

D WRITING, MOVING AND READING
Writing and reading
[X3,uu-,D1u], [X3,ou-,D1o], [X3,iu-,D1i], [X3,zu-,D1z],
[D0,uu-,D1z], [D0,ou-,D1i], [D0,iu-,D1o], [D0,zu-,D1u],
[D1u,uu-,X4], [D1u,oo+,D1u], [D1u,ii+,D1u], [D1u,zz+,D1u],
[D1o,uo-,X4], [D1o,oo+,D1o], [D1o,ii+,D1o], [D1o,zz+,D1o],
[D1i,ui-,X4], [D1i,oo+,D1i], [D1i,ii+,D1i], [D1i,zz+,D1i],
[D1z,uz-,X4], [D1z,oo+,D1z], [D1z,ii+,D1z], [D1z,zz+,D1z],
Moving

[X4,zu+,D2z],
[D2u,ou+,D2o], [D2u,iu+,D2i],

[D2o,uo+,D2u], [D2o,oo+,D2o], [D2o,io+,D2i], [D2o,zo+,D2z],
[D2i,ui+,D2u], [D2i,oi+,D2o], [D2i,ii+,D2i], [D2i,zi+,D2z],
[D2z,uz+,X3], [D2z,oz+,D2o], [D2z,iz+,D2i], [D2z,zz+,D2zz],
[D2zz,uz+,D0], [D2zz,oz+,D2o],

18

E SHUTTLE UPDATING
Beginning of the updating

[X4,oo-,E1b], [X4,io-,E1a],
[E1a,uz-,E2a], [E1a,oz-,E2b], [E1a,iz-,X6], [E1a,zz-,X5],
[E1b,uz+,X5], [E1b,oz+,X6], [E1b,iz+,E2b], [E1b,zz+,E2a],
End of the updating

[E2a,oo+,E2b], [E2a,iu+,E2b],
[E2b,oo+,E4], [E2b,ii+,E4],
[E4,oi+,E4], [E4,io-,E5], [E4,zz-,X7],

[E5,uu+,E5], [E5,oo+,E5], [E5,ii+,E5], [E5,zz-,X6],

F SUTTLE MOVING TO NEXT z
[X5,uu+,X5], [X5,oo+,X5], [X5,ii+,X5], [X5,zz-,F1],
[F1,uz+,F2u], [F1,oz+,F2o],
[F2u,uu+,F2u], [F2u,ou+,F2o], [F2u,iu+,F2i], [F2u,zu+,F3],
[F2o,uo+,F2u], [F2o,oo+,F2o], [F2o,io+,F2i], [F2o,zo+,F3],
[F2i,ui+,F2u], [F2i,oi+,F2o], [F2i,ii+,F2i], [F2i,zi+,F3],

[F3,oz-,F4o], [F3,iz-,F4i], [F3,zz-,X6],
[F4o,uu+,F4o], [F4o,oo+,F4o], [F4o,ii+,F4o], [F4o,zo-,F1],
[F4i,uu+,F4i], [F4i,oo+,F4i], [F4i,ii+,F4i], [F4i,zi-,F1],

G SHUTTLE DECREASING
[X6,uu+,G1], [X6,oo+,G1], [X6,iu+,G1],
[G1,uu-,X7], [G1,oi+,G1], [G1,io+,X5], [G1,zz-,X8],

H SHUTTLE REVERSING AFTER BLANK SYMBOLS INTRODUCTION
[X7,uu-,E2a], [X7,ou-,E2b], [X7,iu+,X7],
[E2a,uu+,E2a], [E2a,zz-,I1],
[E2b,uu+,E2b], [E2b,zz-,I2],
[I1,uo-,X8],
[I2,ui-,X8],

I INSTRUCTION ORIENTATION TEST AFTER BLANK SYMBOLS INTRODUCTION
[X8,ui+,X8], [X8,oo+,X8], [X8,iu+,X8], [X8,zz+,I1],

[I1,oo+,I2], [I1,ii-,I2],
[I2,oo+,X1], [I2,ii+,X1], [I2,zz+,X5],

J END OF THE PROGRAM
[X1,zz+,X9],

[X9,oo+,X9], [X9,ii+,X9], [X9,zz+,X9]];

19

9 Annex: Graph of the universal Turing program

0 7

u
z
+

o
o
+

i
i
+

zu−

oo+

ii+

z
z
+

zz+
8 c d

ui+

oo+

iu+

zz+
oo+

ii−

oo+

ii+

zz+

7

a b

c d

uu− ou−

iu+

uu+

zz−

uu+

zz−

uo− ui−

6

u
u
+

o
o
+

i
u
+

uu−
oi+

io+

zz−

5
u
u
+

o
o
+

i
i
+

zz−

uz+ oz+
uu+

ou+

iu+zu+

oo+uo+

io+

zo+

ui+

oi+

ii+zi+

oz− iz−

zz−

zo−

uu+

oo+

ii+

zi−

uu+

oo+

ii+

4ab

oo−

io−
uz−oz−

iz−

zz−uz+

oz+

iz+ zz+

oo+

iu+

oo+

ii+

o
i
+

io−

zz−

u
u
+

o
o
+

i
i
+

zz−

9
zz+ o

o
+

i
i
+

z
z
+

1

ii+oo+

iu−

oo+

o
o
+

i
i
+

z
z
+

zz+

oi−io−

o
o
+

i
i
+

z
z
+

ui+

o
o
+

i
i
+

z
z
+

uo+

iu−

ou−

uu−

zz−

iu+

ou+

o
o
+

i
i
+

z
z
+

uo+

u
o
+

zz−

oo+

o
o
+

i
i
+zz+

2

oo+

iu−

ui+

o
i
+

i
o
+

z
u
−

oo− ii−

uo+
o
o
+

i
i
+

zu+

uz+
o
o
+

i
i
+

zi+

oi−

ii−
u
u
+

o
o
+

i
i
+

z
z
+

oo−
3

uu− ou− iu− zu−

uu−o
u
−

i
u
−

zu−uu−

o
o
+

i
i
+

z
z
+

u
o
−

o
o
+

i
i
+

z
z
+

u
i
−

o
o
+

i
i
+

z
z
+

uz−

o
o
+

i
i
+

z
z
+

zu+

ou+

iu+

uo+

oo+

io+

zo+

ui+

oi+

ii+

zi+
uu+

oz+

iz+

zz+

uz+ oz+

20

10 Annex: Universal indirect addressing program

INITIALISAT-
ION OF THE
REGISTERS
[0,cst,8,0],
[1,cst,10,2],
[2,cst,11,11],
[3,cst,12,20],
[4,cst,13,26],
[5,cst,14,33],
[6,cst,15,67],
[7,cst,16,68],
[8,cst,17,70],
[9,cst,18,76],
[10,cst,19,82],
[11,cst,20,88],
[12,cst,21,94],

ENCODING OF
THE EMULATED
PROGRAM
INITIALISAT-
ION OF THE
SOURCE POSIT-
ION R[1] AND
THE BOOLEAN
VALUE c
[13,cst,2,24],
[14,cst,5,1],
[15,cst,0,16],
INCREASING
THE SOURCE
POSITION R[1]
[16,plus,1,9],
CASE STUDY
ACCORDING
TO THE VALUE
a OF R[R[1]]
[17,from,3,1],
[18,to,1,8],
[19,plus,3,11],
[20,from,0,3],
CASE a=1

[21,ifzero,5,24],
[22,cst,5,0],
[23,cst,4,0],
[24,plus,4,4],
[25,plus,4,9],
[26,cst,0,15],
CASE a=2
[27,ifzero,5,30],
[28,cst,5,0],
[29,cst,4,0],
[30,plus,4,4],
[31,plus,4,9],
[32,plus,4,9],
[33,cst,0,15],
CASE a=3
[34,ifzero,5,36],
[35,cst,0,40],
[36,plus,2,9],
[37,sub,4,9],
[38,to,2,4],
[39,cst,5,1],
[40,cst,0,15],
END
[41,to,1,8],
[42,cst,4,1],
[43,plus,4,1],
[44,cst,6,25],
[45,to,4,6],

PROGRAM
EMULATION
SKIP INCREM-
ENTATION OF
THE INSTRUC-
TION COUNTER
[46,cst,0,49],
INCREASING
THE INSTRUC-
TION COUNTER
[47,from,6,1],
[48,plus,6,9],
[49,to,1,6],

COMPUTING THE
POSITION OF
INSTRUCTION
NB ZERO
[50,from,7,1],
[51,cst,6,25],
[52,plus,6,7],
[53,plus,6,7],
[54,plus,6,7],
HALTING TEST
[55,cst,7,0],
[56,plus,7,1],
[57,sub,7,6],
[58,ifzero,7,100],
COMPUTING
a:=R[R[6]]
[59,from,3,6],
COMPUTING
b:=R[R[6]]+R[1]
[60,plus,6,9],
[61,from,4,6],
[62,plus,4,1],
COMPUTING
c:=R[R[4]+2]
[63,plus,6,9],
[64,from,5,6],
CASE STUDY
ACCORDING TO
THE VALUE OF a
[65,cst,6,15],
[66,plus,6,3],
[67,from,0,6],
NO
INSTRUCTION
[68,cst,0,99],
CONSTANT
INSTRUCTION
[69,to,4,5],
[70,cst,0,46],
PLUS
INSTRUCTION
[72,plus,5,1],

[73,from,5,5],
[74,plus,6,5],
[75,to,4,6],
[76,cst,0,46],
MINUS
INSTRUCTION
[77,from,6,4],
[78,plus,5,1],
[79,from,5,5],
[80,sub,6,5],
[81,to,4,6],
[82,cst,0,46],
FROMINDIRECT
INSTRUCTION

[83,plus,5,1],
[84,from,5,5],
[85,plus,5,1],
[86,from,5,5],
[87,to,4,5],
[88,cst,0,46],
TOINDIRECT
INSTRUCTION
[89,from,4,4],
[90,plus,4,1],
[91,plus,5,1],
[92,from,5,5],
[93,to,4,5],
[94,cst,0,46],
IFZERO
INSTRUCTION
[95,from,4,4],
[96,ifzero,4,98],
[97,cst,0,46],
[98,to,1,5],
[99,cst,0,49],
END
[100,plus,9,1],
[101,from,9,9],
[102,plus,1,9].

