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Abstract

In this paper we study a naive and incomplete algorithm for solving systems of
non-linear constraints. These constraints are expressed with variables ranging over
reals, rational constants, the operations −, +, × and the relations ≥, >, =, 6=. By
solving a system S we understand: first, deciding whether S has at least one solution;
second, computing the set of equations of the form x = constant which are entailed
by S.

The preliminary phase of the naive algorithm consists of introducing intermediate
variables for splitting S into two subsystems, a linear one and a non-linear one
containing only constraints of the form z = x × y, where x, y and z are variables.
The naive algorithm itself will repeat two actions until it reaches a stable system or
a linear part that has no solution. The first action is to solve the linear part of S.
The second action is to consider the equations of the form x = constant that are
entailed by the linear part of S and to replace each variable x by the corresponding
constant in the right-hand sides of the non-linear equations .

We show that the naive algorithm turns out to be complete in the following non-
standard structure for reals: multiplication is modified by regarding the product
of two irrational numbers as an element ω which is outside of the domain of the
reals. The operations are extended by taking ω as the value as soon as one of the
arguments is ω. An exception to this principle is made for multiplication by zero,
which always produces zero. All the relations, the = relation included, are considered
to be satisfied as soon as one of their arguments is ω. Rational numbers are kept as
constants and variables are not allowed to take the value ω.

Introduction

It is possible to solve non-linear constraints over real numbers. It was Alfred Tarski
who obtained this result in 1930 in the general context of the theory of existential and
universal quantification. The result was published much later in [12]. In 1973 George
Collins [1] proposed an implementable algorithm for the same problem. This algorithm
is known under the name “cylindrical algebraic decomposition” and it has given rise to
numerous further developments. Unfortunately it has been shown that the complexity
of the cylindrical algebraic decomposition algorithm is doubly exponential in the number
of quantifier alternations [6]. For the purely existential case which is of interest here the
complexity is singly exponential in the number of variables. It turns out that in practice
the largest number of variables that one can treat lies somewhere between 5 and 10. Let us
finally mention that for the purely existential case other algorithms have been developed.
The interested reader will find a comparison of their different complexities in [7].

The originators of the three principal constraint logic programming languages Pro-
log III [3], CLP(R) [9] and CHIP [5] were thus well guided in restricting themselves to
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essentially linear constraints. As a result they have taken advantage of two efficient al-
gorithms [8]: the Gaussian algorithm, which is used for the elimination of variables, and
the simplex algorithm of George Dantzig [4], which serves to optimize a linear function
on variables constrained by linear ≥ inequalities.

However, many problems formulated in a non-linear fashion can be solved by a naive
algorithm which consists in combining the solving of the linear part of the problem with
the integration of constraints that have become linear because the values of certain coef-
ficients were determined. In the present paper we intend to clarify and justify this naive
algorithm. The paper consists of eight parts followed by a conclusion. Part 1 is an in-
formal presentation of the algorithm with respect to an example. Part 2 introduces the
terminology for speaking about constraints independently of the domain, more precisely,
of the structure in which one is working. Parts 3 and 4 are devoted to the standard
structure of the reals and to a non-standard1 structure of the reals in which the domain,
the operations and the relation are slightly modified. Part 5 contains the main result of
the paper: the naive algorithm solves every system of constraints, including non-linear
ones, not in the standard but rather in the non-standard structure. Parts 6, 7 and 8 are
devoted to the proofs of the theorems used in preceeding parts.

1 An example of naive solving

In the domain of real numbers let us consider the system of non-linear equations Sn of
the form

Sn = T0 ∪ T1 ∪ · · · ∪ Tn,

where T0 is the system {
x0 = 1,
y0 = 2

}

and Ti+1 the system
{

xi × xi+1 + yi × yi+1 = 0,
xi+1 + yi+1 = (xi − yi)(2xi + yi + 1)

}
.

Let us try to solve the system S2 which is



x0 = 1,
y0 = 2,
x0x1 + y1y0 = 0,
x1 + y1 = (x0 − y0)(2x0 + y0 + 1),
x1x2 + y1y2 = 0,
x2 + y2 = (x1 − y1)(2x1 + y1 + 1)




.

1The term “non-standard” used in this paper is not to be confused with the one used in non-standard
analysis.
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We introduce the intermediate variables ui, vi, wi, zi, z
′
i and express all the non-linear

products in constraints of the form z = xy, where x, y and z are variables.



x0 = 1,

y0 = 2,

u1 + v1 = 0,
u1 = x0x1,
v1 = y0y1,

x1 + y1 = w1,
w1 = z0z

′
0

z0 = x0 − y0,
z′0 = 2x0 + y0 + 1,

u2 + v2 = 0,
u2 = x1x2,
v2 = y1y2,

x2 + y2 = w2,
w2 = z1z

′
1,

z1 = x1 − y1,
z′1 = 2x1 + y1 + 1




We can now partition the system into a purely linear and a purely non-linear part.



x0 = 1,
y0 = 2,
u1 + v1 = 0,
x1 + y1 = w1,
z0 = x0 − y0,
z′0 = 2x0 + y0 + 1,
u2 + v2 = 0,
x2 + y2 = w2,
z1 = x1 − y1,
z′1 = 2x1 + y1 + 1




∪




u1 = x0x1,
v1 = y0y1,
w1 = z0z

′
0,

u2 = x1x2,
v2 = y1y2,
w2 = z1z

′
1




Let us solve the linear part or, more precisely, leaving aside the non-linear part, let us
make explicit all the hidden equations of the form x = k, where x is a variable and k
a constant. In this connection, observe that the 1st, 2nd, 5th and 6th equation form a
subsystem of 4 equations with 4 unknowns.




x0 = 1,
y0 = 2,
z0 = −1,
z′0 = 5,

u1 + v1 = 0,
x1 + y1 = w1,
u2 + v2 = 0,
x2 + y2 = w2,
z1 = x1 − y1,
z′1 = 2x1 + y1 + 1




∪




u1 = x0x1,
v1 = y0y1,
w1 = z0z

′
0,

u2 = x1x2,
v2 = y1y2,
w2 = z1z

′
1




In the non-linear part let us now substitute k for every variable x, for which we have the
equation x = k in the linear part. We then bring back the new linear equations in the
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linear part. 


x0 = 1,
y0 = 2,
z0 = −1,
z′0 = 5,
u1 + v1 = 0,
x1 + y1 = w1,
u2 + v2 = 0,
x2 + y2 = w2,
z1 = x1 − y1,
z′1 = 2x1 + y1 + 1,

u1 = x1,
v1 = 2y1,
w1 = −5




∪



u2 = x1x2,
v2 = y1y2,
w2 = z1z

′
1




We now solve again the non-linear part where the 5th, 6th and the 5 last equations form
a system of 7 equations with 7 unknowns.




x0 = 1,
y0 = 2,
z0 = −1,
z′0 = 5,
x1 = −10,
y1 = 5,
u1 = −10,
v1 = 10,
w1 = −5,
z1 = −15,
z′1 = −14,

u2 + v2 = 0,
x2 + y2 = z2




∪



u2 = x1x2,
v2 = y1y2,
w2 = z1z

′
1




In the non-linear part let us now again substitute k for every variable x, for which we
have the equation x = k in the linear part. We then bring back the new linear equations
in the linear part. 



x0 = 1,
y0 = 2,
z0 = −1,
z′0 = 5,
x1 = −10,
y1 = 5,
u1 = −10,
v1 = 10,
w1 = −5,
z1 = −15,
z′1 = −14,
u2 + v2 = 0,
x2 + y2 = z2,

u2 = −10x2,

v2 = 5y2,
w2 = 210
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Let us now solve the new purely linear system. We finally obtain,



x0 = 1,
y0 = 2,
z0 = −1,
z′0 = 5,
x1 = −10,
y1 = 5,
u1 = −10,
v1 = 10,
w1 = −5,
z1 = −15,
z′1 = −14,
x2 = 70,
y2 = 140,
u2 = −700,
v2 = 700,
w2 = 210




.

Since the naive algorithm is integrated to Prolog III [3, 11], it is possible to solve the
system Sn by the program:

sequence(〈〈1, 2〉〉) →;
sequence(s · 〈〈x, y〉〉 · 〈〈x′, y′〉〉) →

sequence(s · 〈〈x, y〉〉),
{x′ × x + y′ × y = 0,
x′ + y′ = (x − y)× (2x + y + 1)};

To calculate the sequence of pairs

s = 〈〈x0, y0〉, · · · , 〈x6, y6〉〉,
we put the query2

sequence(s), {|s| = 7}?
and we get the result

{s =
〈〈1, 2〉, 〈−10, 5〉, 〈70, 140〉, 〈−39340, 19670〉,
〈1160707030, 2321414060〉,
〈−10777926478252781260, 5388963239126390630〉,
〈87122774377966800110603263954929000070,
174245548755933600221206527909858000140〉〉}.

Let us return to our naive algorithm. If we had begun with the system {x2−2x+1 = 0}
we would have arrived at something like {z − 2x + 1 = 0, z = x × x} without having
discovered that x equals 1 and, even worse, if we had started with {x × x = −4} we
would have arrived at {z = −4, z = x × x} without discovering that the system had no
solutions. We can now raise the question: what exactly does the naive algorithm solve in
these cases? The answer to this question constitutes the content of this paper.

2 Terminology

We call structure a 4-tuple
(D, D′, F, R),

2In the commercial version of Prolog III, the constraint |s| = 7 is written s :: 7 and the question mark
is replaced by a semicolon.
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where D is a domain, D′ a subdomain of D, F a set of operations on D and R a set of
relations over D. With each operation and each relation is associated its arity, a non-
negative integer n. An n-place operation f is a mapping of type Dn → D. As usual,
0-place operations are called constants and are identified with elements of the domain.
An n-place relation r is a subset of Dn and instead of writing (a1, . . . , an) ∈ r, we write
r(a1, . . . , an).

To refer to the elements of subdomain D′, we assume as given an infinite universal set
V of variables and we introduce two types of expressions: terms to refer to the elements
of the domain and constraints, to formulate properties of these elements. More precisely,
a term is a word constructed from the alphabet V ∪F and defined recursively as follows:
a term of depth 0 is a word of one of the two forms

x or a,

where x ∈ V and a ∈ D, and a term of depth k + 1 is a word of the form

ft1 · · · tn,

where f is an n-place operation, where at least one ti is a term of depth k and where
the others are terms at most of depth k. The constraints are words constructed from the
alphabet V ∪ F ∪R and have the form

rt1 · · · tn, (1)

where r is an n-place relation and where each ti is a term.
Given a subset W of the set V of variables, an assignment to W is a mapping

σ : W → D′.

When W is not explicitly mentioned, W is assumed to be the universal set V of variables.
Such an assignment σ of V extends naturally to a mapping σ? from the set of terms into
the domain by taking

σ?(x) = σ(x),
σ?(a) = a,

σ?(ft1 · · · tn) = f(σ?(t1), . . . , σ?(tn)).

An assignment σ is a solution of the constraint (1) if

r(σ?(t1), . . . , σ?(tn)).

A system of constraints is a finite set of constraints. A solution of a system S of
constraints is an assignment which is a solution of all the constraints of S. If W is a
subset of V , then a solution over W of S is an assignment to W which agrees with a
solution of S over W . Two systems are equivalent if they have the same set of solutions.
Two systems are equivalent over W if they have the same set of solutions over W .

3 Standard Structure for the reals

Let R be the set of real numbers and Q the set of rational numbers.
By standard structure we mean the structure

(R,R,Q ∪ {−, +,×}, {>,≥, =, 6=})
which has

• as its domain, the set of real numbers,

• as its subdomain, the set of real numbers (the variables cover the entire domain),

6



• as its operations, the rational numbers considered as zero-place operations (that is,
as constants), the usual one-place operation −, and the usual two-place operations
+ and ×,

• as its relations, the usual two-place relations >, ≥, =, 6=.

As this structure is classic, we will use the infix notations and the standard abbrevi-
ations to refer to terms and constraints. In particular, we will write t1 − t2 instead of
t1 + (−t2) and we will use

∑
for multiple sums. We should observe, however, that while

variables can have as their value irrational numbers, the constants occurring in terms are
restricted to rational numbers. A term is linear if it does not contain a subterm of the
form t1× t2, where neither t1 nor t2 are constants. This definition is purely syntactic and
according to this definition the term 3× x is linear, whereas the term (2 + 1)× x is not.
A system constructed on the standard structure is called standard. A standard system
containing only linear terms is called linear.

In what follows we will need two important properties of linear systems. Here is the
first one:

Property 3.1 If a standard linear system admits at least one solution then it admits at
least one completely rational solution.

By completely rational solution we mean a solution σ such that for every variable x
the value σ(x) is a rational number. This property forms the content of theorem 6.2 which
is dealt with in part 6. We now come to the second property.

Property 3.2 Let S be a standard linear system and W a subset of the universal set of
variables. The two following propositions are equivalent.

1. For all x ∈ W there exist two solutions σ and τ of S such that σ(x) and τ(x) are
distinct reals.

2. There exist two solutions σ and τ of S such that for all x ∈ W the values σ(x) and
τ(x) are distinct irrational numbers.

This property forms the content of theorem 7.5 which is dealt with in part 7.

4 Non-standard structure for the reals

We now modify the standard structure to obtain a non-standard structure

(R ∪ {ω},R,Q ∪ {−̇, +̇, ×̇}, {>̇, ≥̇, =̇, ˙6=})

defined as follows:

• The domain is the set of real numbers extended by an element ω distinct from all
the real numbers.

• The subdomain is the set of real numbers (variables cannot take the value ω).

• The operations are the rational numbers considered as zero-place relations (that is,
as constants), the one-place operation −̇, and the two-place operations +̇ and ×̇.
These operations −̇, +̇, ×̇ coincide with the operations −, +,×, when all operands
are distinct from ω, and yield the value ω, wherever an operand is ω. There are two
exceptions to this general rule:

a ×̇ b = ω, if a and b are irrational,
0 ×̇ω = ω ×̇ 0 = 0.
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• The relations are the two-place relations >̇, ≥̇, =̇, ˙6=. They coincide with the
relations >,≥, =, 6=, if no operand is ω, and are satisfied, whenever an operand is
ω.

The operation ×̇ does not distribute over +̇. Indeed, if one considers the irrational
number π, we have π ×̇ (π +̇ (−̇π)) = 0 but (π ×̇ π) +̇ (π ×̇ (−̇π)) = ω.

The operations +̇ and ×̇ are however commutative and associative. Only the associa-
tivity of non-standard multiplication is not obvious. To show that the products (a ×̇ b) ×̇ c
and a ×̇ (b ×̇ c) are equal we consider four possible forms of the triplet (a, b, c). First, the
triplet contains 0: the products are then equal to 0. Second, the triplet does not contain 0,
but does contain ω: the products are then equal to ω. Third, the triplet contains neither
0 nor ω and it contains at most one irrational number: the products are then equal to
a× b× c. Fourth, the triplet does not contain 0 or ω but contains at least two irrational
numbers: the products are then equal to ω, (this follows from the fact that the product
of a rational and an irrational is an irrational).

It should be observed that if we had decided that ω × 0 = ω, instead of ω × 0 = 0,
non-standard multiplication would have been no longer associative, because if we consider
again the irrational number π, one would have had π ×̇ (π ×̇ 0) = 0 and (π ×̇ π) ×̇ 0 = ω.

With each term t, each constraint c and each system S in the standard structure,
one can associate the term ṫ, the constraint ċ and the system Ṡ in the non-standard
structure obtained by replacing the operations and relations −, +, ×, >, ≥, =, 6= by
the corresponding operations and relations −̇, +̇, ×̇, >̇, ≥̇, =̇, ˙6=. We can then show by
induction on the depth of the term t that for every assignment σ to the universal set of
variables V ,

σ?(t) 6= σ?(ṫ) implies σ?(ṫ) = ω

and therefore that if σ satisfies the constraint c, then σ also satisfies the constraint ċ. It
follows that:

Property 4.1 Every solution of the standard system S is a solution of the associated
non-standard system Ṡ.

If we now take the term t to be linear then, since ω is not among the constants, since
no variable can take the value ω and since no operation can yield the value ω, we always
have σ?(t) = σ?(ṫ) and therefore σ satisfies the constraint c if and only if σ also satisfies
the constraint ċ. It follows that:

Property 4.2 If S is linear, then the standard system S and the associated non-standard
system Ṡ have the same set of solutions.

The relation =̇ is not an equivalence relation, since it is not transitive. We have
1 =̇ω and ω =̇ 2, but not 1 =̇ 2. However, the relation =̇, like true equality, allows the
introduction of intermediate variables to name terms.

Property 4.3 Let c[t] be a non-standard constraint in which an occurrence of a term t
has been chosen and let c[x] be the same constraint in which the chosen occurrence of t
has been replaced by a variable x which does not occur in c[t]. The systems

{c[t]} and {c[x], x =̇ t}

are equivalent over the subset of variables V − {x}.

This property forms the content of theorem 8.3 which is dealt with in section 8.
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5 Solving non-standard systems

We now have all the necessary elements to show that the naive algorithm figuring in our
introduction is a complete algorithm for solving non-standard systems of constraints. We
must however agree upon the meaning of the word ‘solving’. Intuitively, the problem is
to determine the set of solutions of a system of constraints S in a given mathematical
structure. Since this set can be infinite, as for instance in the system {0 ≤ x+y, x+y ≤ 4},
it is not always possible to explicitly enumerate its elements. We must therefore be a little
less ambitious and for our part, we will stipulate that solving a system S consists of two
things: to determine if S has at least one solution, and if so, to produce a solved system
T , which is equivalent to S over the set of variables of S. The notion of “solved system”
is defined as following:

Definition 5.1 A sytem T is solved if it has at least one solution and if it is of the form

{x1 ≈ a1, . . . , xn ≈ an} ∪ T ′, (2)

• where {x1, . . . , xn} is the set of variables xi of V whose value σ(xi) is the same in
every solution σ of T ,

• where the ai’s are constants of the structure under consideration,

• where ≈ is a binary relation of the structure under consideration which coincides
with the equality relation each time its operands are constants or elements of the
sub-domain of the variables.

According to this definition the relation ≈ will be the relation = in the standard
structure and the relation =̇ in the non-standard structure.

It must be noted that the existence of a solved system, equivalent to a given one,
can be a problem because of the lack of some constants. For example, in our standard
structure, it is not possible to solve (in terms of the definition we have just given) the
system {x×x = 2, x ≥ 0}, given the fact that the number

√
2 is not rational and thus not

one of the constants. It would have been necessary to accept all the algebraic numbers as
constants. We will return to this point in our conclusion.

If we restrict ourselves to standard linear systems, the problem just mentioned no
longer exists due to the following property.

Property 5.1 For every standard linear system which has at least one solution there
exists an equivalent solved standard linear system.

Indeed, let S be a linear standard system which has at least one solution and let
{x1, . . . , xn} be the (necessarily finite) set of variables xi of V whose value σ(xi) is the
same real number ai in every solution σ of S. If one of the ai’s is an irrational number,
there is a contradiction with the property 3.1 which states that there must exist at least
one completely rational solution. All the ai’s are thus rational numbers and the system
{x1 = a1, . . . , xn = an} ∪ S is in solved form and equivalent to S.

We can thus assume that we have an algorithm which allows us to solve any standard
linear system in the sense specified above. For a detailed account of such an algorithm
we recommend [8] and for a more general view [10]. Given property 4.2 concerning the
equivalence of standard linear systems and the associated non-standard ones, the same
algorithm can be used to solve non-standard linear systems. We can therefore assume that
we have an algorithm for solving linear non-standard system and propose the following
algorithm for solving non-linear non-standard systems.

Algorithm 5.1 Let S be a non-standard system that is to be solved. We consider the
pair (S1, S2) of non-standard systems which is initialized at the beginning to (S, ∅) and we
carry out action 1.
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1. As long as S1 contains an occurrence of a term or subterm of the form s ×̇ t, where
neither s nor t are constants, introduce three new variables x, y, z, replace this
occurrence of s ×̇ t by z, add to S1 the constraints x =̇ s, y =̇ t and add to S2 the
constraint z =̇ x ×̇ y. Proceed then to action 2.

2. Solve the linear system S1. If S1 has no solution, stop and conclude that the orig-
inal system S has no solution. Else replace S1 with its solved form and proceed to
action 3.

3. As long as the system S2 contains a constraint of the form z =̇x ×̇ y, and the system
S1 contains a constraint of the form x =̇ a or y =̇ a, where a is a constant, remove
the constraint z =̇ x ×̇ y from S2 and add the constraint z =̇ a ×̇ y or z =̇x ×̇ a to S1,
as the case may be. Proceed then to action 4.

4. If action 3 modified the pair (S1, S2), repeat action 2. Else stop here and exhibit
S1 ∪ S2 as the solved form of S.

There is no difficulty in showing that the algorithm always terminates. Indeed, every
time one executes action 2 after action 4 the number of constraints of S2 diminishes and
the number of times that one performs these actions is therefore finite. Let us now show
that the answers yielded by the algorithm are correct.

We establish first that after every transformation of the pair (S1, S2) the system S1∪S2

remains equivalent to itself over the set of variables which it contains. This is true for the
transformation 1 given property 4.3. This is equally true in the case of transformation 2.
This is also true for transformation 3 given that in the constraint x=̇a or y=̇a the relation
=̇ behaves like a true equality. We conclude that the system S1 ∪ S2 is always equivalent
to the system S over the set of variables of S.

When one detects in action 2 that S1 is not solvable, it is therefore correct to conclude
that S is not solvable. The only thing left to show is that the final system S1 ∪ S2 that
was produced as an answer at the end of action 2 is solved. This final system is of the
form

T ∪ {u1 =̇ v1 ×̇w1, . . . , um =̇ vm ×̇wm}, (3)

where T is a solved linear system, i.e. of the form (2), and where the ui,vi,wi are variables,
the vi,wi being distinct from the variables xi of T . As the system T is solved, for every
variable y other than x1, . . . , xn there exist at least two solutions σy and τy of T such
that σy(y) 6= τy(y). Due to properties 4.2 and 3.2 there thus exist two solutions σ and
τ of T such that for every variable y other than x1, . . . , xn the numbers σ(y) and τ(y)
are irrational and distinct. The assignments σ and τ satisfy every equation ui =̇ vi ×̇wi

because σ(vi) ×̇ σ(wi) = ω and τ(vi) ×̇ τ(wi) = ω. The assignments σ and τ are thus
solutions of the system (3) and since for every variable y other than x1, . . . , xn we have
σ(y) 6= τ(y), the system (3) is solved.

6 The rational solution theorem

What remains to be shown is the correctness of properties 3.1, 3.2 and 4.3. We begin
with the first property. We will be concerned with the standard structure Σ as defined in
part 3.

Lemma 6.1 (Block of solutions) Let σ be a solution of a linear system S containing
only constraints of type > and 6=. There always exists a strictly positive real number h
such that every assignment τ that satisfies the condition

|τ(x) − σ(x)| ≥ h, for all x ∈ V, (4)

is a solution of S.
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Proof. Let us first consider the case where the system S contains only constraints of
type >. The system S can always be put in the form

{t1 > 0, . . . , tm > 0},

where every ti is a term of the form

bi +
n∑

j=1

aijyj ,

and where the bi’s and the aij ’s are real numbers and y1, . . . , yn the variables occurring
in S. Let σ be a solution of S, that is, an assignment such that for every i we have

σ?(ti) > 0.

If m = 0 or n = 0 or all the aij ’s are zero, every assignment τ of V is a solution of S and
the property is proved. We can therefore assume that m ≥ 1, that n ≥ 1, that at least
one aij is not zero and introduce three strictly positive reals k, a, h such that

k < min{σ?(ti)}, a = max{|aij |}, h = k
na .

Let τ be an assignment to V that respects condition (4). For every j we have

a× |σ(yj)− τ(yj)| ≤ k/n

and thus for all i and j we have successively

|aij | × |σ(yj)− τ(yj)| ≥ k/n,
aij × (σ(yj)− τ(yj)) ≥ k/n,

aijτ(yj) ≥ aijσ(yj)− k/n.

By taking the sum with respect to j and by adding to each member the quantity bi we
obtain successively and for all i

bi +
∑n

j=1 aijτ(yj) ≥ bi +
∑n

j=1 aijσ(yj)− k,

τ?(ti) ≥ σ?(ti)− k,
τ?(ti) > 0.

The assignment τ is therefore a solution of S.
It remains to be shown that the property also holds when in S the number n of

constraints of the form s 6= t is not zero. For this it suffices to consider the 2n systems
Si obtained by replacing in S every constraint of the form s 6= t either by the constraint
s > t, or by the constraint t > s. We observe that for every system Si, each solution of
Si is a solution of S. If σ is a solution of S then there exists necessarily a Si admitting
σ as solution. It follows from the property that we have just proved, that there exists a
strictly positive real number h such that every assignment τ satisfying the condition 4 is
a solution of Si and thus of S.

Theorem 6.2 (Rational Solution) If a standard linear system admits at least one so-
lution then it admits at least one completely rational solution.

Proof. Let us suppose first of all that the system S under consideration contains no
constraint of type ≥. We now use induction on the number n of constraints of type = of
S. Let σ be a solution of S. If n = 0 then it follows from the property 6.1 concerning the
existence of a block of solutions, that there exists a strictly positive real number h such
that every assignment τ which satisfies the condition

σ(x) − h ≤ τ(x) ≤ σ(x) + h, for all x ∈ V

11



is a solution of S. Since one can always insert a rational number between two reals, we
can choose for every x a rational number ax such that

σ(x) − h < ax < σ(x) + h.

The assignment τ defined by τ(x) = ax, for every x ∈ V , is thus a completely rational
solution of S. Let us suppose that the property holds for n and let us show that it holds
for n + 1. Let S be a solvable linear system containing n + 1 contraints of type = and let
c be one of these constraints. Since the set of rationals (together with operations + and
×) is a subfield of the reals, the constraint c can always be put in one of two forms

0 = 0 or x = t,

where t is a term of the standard structure in which x does not occur. If c is of the
form 0 = 0, the system S − {c} admits, by induction assumption, a completely rational
solution, which is also a completely rational solution of S. If c is of the form x = t,
let T be the system obtained by replacing in S − {c} every occurrence of x by t. By
induction assumption, T admits a completely rational solution ρ, and since the systems
S and T ∪ {x = t} are equivalent and since T does not contain any occurrence of x, the
assignment ρ′ defined by ρ′(x) = ρ?(t) and ρ′(y) = ρ(y), for every variable y other than
x, is a completely rational solution of S.

It remains to be shown that the property holds when in S the number n of constraints
of the form s ≥ t is not zero. We consider the 2n systems Si obtained by replacing in each
S each constraint of the form s ≥ t first by the constraint s = t, then by the constraint
s > t. We observe that for every system Si, any solution of Si is a solution of S. If σ is
a solution of S then there necessarily exists a Si admitting σ as solution. From what we
have shown it follows that this Si admits a completely rational solution ρ and from the
preceeding remark it follows that ρ is also a solution of S. The system S thus admits a
completely rational solution.

7 Theorem of irrational solutions

To prove property 3.2 we again consider the standard structure defined in 3. Along the
way we establish the well-known theorem of independence of 6= constraints. Another proof
of this theorem which applies to numerous infinite structures [2] can be found in [10]. We
need two new notations. If a is a real and σ and τ are assignments to the same subset W
of variables then aσ and σ + τ are assignments to W defined by

[aσ](x) = aσ(x),

[σ + τ ](x) = σ(x) + τ(x).

Lemma 7.1 (Convexity) Let S be a standard system without 6= constraints. Any linear
combination σ = k1σ1 + · · ·+ knσn of solutions σi of S, where the ki’s are non-negative
reals such that k1 + · · ·+ kn = 1, is also a solution of S.

Proof. We can always assume that all the ki’s are not zero, since if p of them were
zero it would be sufficient to prove the lemma for n− p instead of n. Let us consider any
constraint c of S. This constraint can be put into the form

a1x1 + · · ·+ anxm � b,

where the xi’s are variables which occur in S and where � denotes one of the relations
≥, >, =. By taking into account successively that σi is a solution of S, that ki is strictly
positive, that σ =

∑
kiσi and that

∑
ki = 1 we get

a1σi(x1) + · · ·+ anσi(xm) � b,
a1kiσi(x1) + · · ·+ ankiσi(xm) � bki,

a1

∑
kiσi(x1) + · · ·+ an

∑
kiσi(xm) � b

∑
ki,

a1σ(x1) + · · ·+ anσ(xm) � b.

12



The assignment σ satisfies therefore the constraint c. This constraint c being any con-
straint of S, it follows that σ is a solution of S.

Lemma 7.2 (Pseudo-convexity) Let c1, . . . , cn be n constraints of type 6= and let S be
a linear standard system without 6= constraints. Let σ be a solution of S and τ a solution
of S ∪ {c1, . . . , cn}. There exist at most n reals k such that 0 ≥ k ≥ 1 and such that the
assignment kσ + (1− k)τ is not a solution of S ∪ {c1, . . . , cn}.

Proof. Let k be a real and let ρ be the assignment ρ = kσ + (1− k)τ . Let us consider
a constraint ci. This constraint can always be put in the form ti 6= 0, where ti is a linear
term. We have

ρ?(ti) = τ?(ti) + k
(
σ?(ti)− τ?(ti)

)
.

Due to the fact that τ satisfies the constraint ci, we have τ?(ti) 6= 0. There exists therefore
at most one real k such that ρ?(ti) = 0, that is to say such that ρ does not satisfy ci.
It follows that there exist at most n reals k such that ρ does not satisfy {c1, . . . , cn}.
According to the previous lemma, if 0 ≥ k ≥ 1 the assignment ρ is a solution of S. There
exist therefore at most n reals k such that 0 ≥ k ≥ 1 and such that ρ is not a solution of
S ∪ {c1, . . . , cn}.
Theorem 7.3 (Independence of the 6= constraints) Given a linear standard system
S and n constraints c1, . . . , cn of type 6=, the two following propositions are equivalent.

1. Each of the n systems S ∪ {ci} has at least one solution.

2. The system S ∪ {c1, . . . , cn} has at least one solution.

Proof. Obviously proposition 2 entails proposition 1. To prove that proposition 1
entails proposition 2 let us assume that proposition 1 is true and let us show by induction
on n that proposition 2 is true. If n = 1 proposition 2 coincides with proposition 1. If
n ≥ 2 we can assume that proposition 2 is true for n− 1, that is to say, that the system

S ∪ {c1, . . . , cn−1} (5)

admits a solution σ. Due to the fact that proposition 1 is assumed to be true, the system

S ∪ {cn} (6)

also admits a solution τ . Let k be a real and let ρ be the assignment ρ = kσ + (1 − k)τ .
According to the pseudo-convexity property 7.2, the number of reals k ∈ [0, 1] such that ρ
is not a solution of system (5) is at most equal to n−1. The number of reals k ∈ [0, 1] such
that ρ is not a solution of system (6) is equal to the number of reals (1− k) ∈ [0, 1] such
that ρ is not a solution of system (6). According to the pseudo-convexity property 7.2,
this last number is at most equal to 1. Therefore there is an infinite number of reals
k ∈ [0, 1] such that ρ is simultaneously a solution of both systems. Hence the system
S ∪ {c1, . . . , cn} is solvable.

Corollary 7.4 (Multiple solutions) Let S be a standard linear system and let x1, . . . , xn

be n variables taken from the universal set of variables. The two following propositions
are equivalent.

1. For each xi there exist two solutions σi and τi of S such that σi(xi) 6= τi(xi).

2. There exist two solutions σ and τ of S such that for each xi we have σ(xi) 6= τ(xi).

Proof. Let X be the finite set of variables which occur in S or in {x1, . . . , xn}. To each
variable x of X let us associate a distinct variable x′ which is not in X . Let S′ denote
the system S in which every variable x has been replaced by the corresponding variable
x′. Propositions 1 and 2 are then respectively equivalent to the two propositions
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1. each system S ∪ S′ ∪ {xi 6= x′i} is solvable,

2. the system S ∪ S′ ∪ {x1 6= x′1, . . . , xn 6= x′n} is solvable,

which, according to theorem 7.3, are equivalent.

Theorem 7.5 (Irrational solutions) Let S be a linear standard system and W a subset
of the universal set of variables. The two following propositions are equivalent.

1. For all x ∈ W there exist two solutions σ and τ of S such that σ(x) and τ(x) are
distinct reals.

2. There exist two solutions σ and τ of S such that for all x ∈ W the values σ(x) and
τ(x) are distinct irrational numbers.

Proof. As proposition 2 is a particular case of proposition 1, it is sufficient to prove
that 1 entails 2. Moreover, due to the fact that we only need to consider the variables of
W which occur in S, we can assume that W is a finite set {x1, . . . , xn}. According to the
previous corollary, if propostion 1 is true there exist two solutions σ and τ of S such that
for each xi we have σ(xi) 6= τ(xi). According to the pseudo-convexity property 7.2 there
exists a non-countable subset A ⊂ R such that any assignment ρ of the form

ρ = σ + a(τ − σ), with a ∈ A,

is a solution of S. Due to the fact that for each xi we have [τ − σ](xi) 6= 0, the mappings

ϕi : a 7→ ρ(xi), ϕ : a 7→ ρ

are injective, that is to say that a 6= b entails ϕi(a) 6= ϕi(b) and ϕ(a) 6= ϕ(b). The set of
reals

B =
n⋃

i=1

ϕ−1
i (Q)

is countable since the set Q of rationals is countable, since the ϕi’s are injective mappings
and since a finite union of countable sets produces a countable set. It follows that the
set A − B is infinite. Let a and b be two distinct elements of A − B. The assignments
σ′ = ϕ(a) and τ ′ = ϕ(b) are solutions of S and, due to the fact that the mapping ϕi

is injective, are such that for each xi the values σ′(xi) and τ ′(xi) are distinct irrational
numbers.

8 Intermediate variables theorem

To prove the property 4.3 of the relation =̇, we will consider a more general structure
than the non-standard. Instead of taking Q as the set of constants we will take the whole
domain R ∪ {ω}.

Lemma 8.1 (Value of a term containing ω) Let σ be an assignment, let t[ω] be a
term in which an occurrence of ω has been chosen and let t[a] be the same term in which
the chosen occurrence of ω has been replaced by the real a. Exactly one of the three
following propositions is true.

1. σ?(t[ω]) = ω and there exists a real a such that σ?(t[a]) = ω.

2. σ?(t[ω]) = ω, there exists no real a such that σ?(t[a]) = ω and for all reals b there
exists a real a such that σ?(t[a]) = b.

3. σ?(t[ω]) is a real b and for all reals a we have σ?(t[a]) = b.
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Proof. Let us proceed by induction on the depth i of the term t[ω]. If i = 0 then the
term t[ω] can only be ω and proposition 2 is true for a = b. Let us assume that the lemma
is true for i and let us show that the lemma is also true for i = n +1. Let us consider the
term t[ω] of depth n + 1. There are three possible cases:

The term t[ω] is of the form −̇s[ω], where s[ω] is a term of depth n containing the
chosen occurrence of ω. By assumption one of the three propositions of the lemma is true
for s[ω]. If it is proposition 1, then proposition 1 is true for t[ω]. If it is proposition 2,
then proposition 2 is true for t[ω] by taking −b instead of b. If it is proposition 3, then
proposition 3 is true for t[ω] by taking −b instead of b.

The term t[ω] is of the form r +̇ s[ω] or s[ω] +̇ r, where r and s[ω] are terms of depth
i ≥ n, and where the term s[ω] contains the chosen occurrence of ω. Either σ?(r) = ω
and proposition 1 is true for t[ω]. Or σ?(r) is a real. By assumption one of the three
propositions of the lemma is then true for s[ω]. If it is proposition 1, then proposition 1 is
true for t[ω]. If it is proposition 2, then proposition 2 is true for t[ω] by taking b + σ?(r)
instead of b. If it is proposition 3 then proposition 3 is true for t[ω] by taking b + σ?(r)
instead of b.

The term t[ω] is of the form r ×̇ s[ω] or s[ω] ×̇ r, where r and s[ω] are terms of depth
i ≥ n, and where the term s[ω] contains the chosen occurrence of ω. By assumption one of
the three propositions of the lemma is true for s[ω]. If it is proposition 1 then, according
as the value of σ?(r) is or is not 0, proposition 3 or proposition 1 is true for t[ω]. If it is
proposition 2 then, according to whether the value σ?(r) is 0, a non zero rational or an
irrational, proposition 3, proposition 2 or proposition 1 is true for t[ω]. If it is proposition
3 then, according to whether the non-standard product σ?(s[ω]) ×̇σ?(r) is ω or a real,
proposition 1 or proposition 3 is true for t[ω].

Lemma 8.2 (Implicit existential quantification) Let σ be an assignment, let c[ω]
be a constraint in which an occurrence of ω has been chosen and let c[a] be the same
constraint in which the chosen occurrence of ω has been replaced by the real a. The
following propositions are equivalent:

1. Assignment σ satisfies constraint c[ω].

2. There exists a real a such that σ satisfies c[a].

Proof. Let �̇ denote one of the four relations >̇, ≥̇, =̇, ˙6=. We will assume that the
constraint c[ω] is of the form s �̇t[ω], the positions of the terms s and t[ω] being irrelevant
in the following. Propositions 1 and 2 can then be stated as

1. we have σ?(s) �̇ σ?(t[ω]),

2. there exists a real a such that σ?(s) �̇ σ?(t[a]).

Assume property 1 is true. There are three cases. First, σ?(t[ω]) is a real. Let a be
any real. According to the previous lemma σ?(t[a]) = σ?(t[ω]) and therefore proposition
2 is true for this a. Second, σ?(t[ω]) = ω and there exists a real a such that σ?(t[a]) = ω.
Proposition 2 is then true for this a. Thirdly, σ?(t[ω]) = ω and there exists no real a such
that σ?(t[a]) = ω. If one refers to the definitions of relations �̇ there always exists a real
b such that σ?(s) �̇ b. According to the previous lemma there always exists a real a such
that b = σ?(t[a]) and proposition 2 is true for this a.

Assume property 2 is true. If σ?(t[ω]) is a real, according to the previous lemma,
σ?(t[a]) = σ?(t[ω]) and hence proposition 1 is true. If σ?(t[ω]) = ω, due to the fact that
one of the operands of �̇ is equal to ω, proposition 1 is true.

Theorem 8.3 (Intermediate variables) Let c[t] be a non-standard constraint in which
an occurrence of a term t has been chosen and let c[x] be the same constraint in which
the chosen occurrence of t has been replaced by a variable x which does not occur in c[t].
The systems

{c[t]} and {c[x], x =̇ t}
are equivalent over the subset of variables V − {x}.
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Proof. Let us assume that σ is a solution of system {c[t]} and let us show that there
exists a real a such that σ is a solution of the system {c[a], a =̇ t}. If σ?(t) is a real, then
we take a = σ?(t). If σ?(t) = ω then, according to the previous lemma, there exists a real
a such that σ is a solution of {c[a]} and thus also of {c[a], a =̇ t}.

Let us assume that σ is a solution of the system {c[a], a =̇ t}, where a is a real, and
let us show that σ is a solution of system {c[t]}. If σ?(t) is a real, then a = σ?(t) and
therefore σ is a solution of {c[t]}. If σ?(t) = ω then, according to the previous lemma, σ
is a solution of {c[t]}.

Conclusion

In this paper we have used three properties of the set of rational numbers and this only
in the proofs of theorems 6.2 and 7.5. Here are these properties:

1. Between two reals one can always find a rational.

2. The rational numbers form a subfield of the field of reals, that is, the set of rational
numbers is closed under the operations −, +,× and the inverse for multiplication of
a non-zero rational number is always a rational number.

3. The set of rational numbers is countable.

We could therefore have replaced Q by any other subset Q′ of the reals with these three
properties. The set of constants of standard and non-standard constants would then be
Q′ and ω would be the non-standard product of two reals not belonging to Q′. A good
candidate for Q′ would be the set of algebraic numbers. It would suffice to replace the
word “rational” by “algebraic” and the word “irrational” by “transcendant”.3

Other changes are possible. In order to define the numeric part of Prolog III in [3] we
used a variant of the non-standard defined here. This variant does not involve the use of
the element ω, but rather the replacement of the multiplication operation by a three-place
relation µ defined as follows: µ(a, b, c) means that a, b and c are reals such that c = a× b
or that a and b are irrationals and that c is an arbitrary real.

We conclude this paper by giving an indication of the expressive power of non-standard
multiplication. In the standard structure one can do without the relations >, 6= and ≥.
Indeed, if we replace

t1 > t2 by t1 ≥ t2, t1 6= t2,
t1 6= t2 by x× (t1 − t2) = 1,
t1 ≥ t2 by t1 − t2 = x× x,

where x designates a new variable, one transforms every standard system S in a system
of equations S′ that is equivalent to S on the set of variables of S. If one applies the same
procedure to a non-standard system Ṡ, the definitions of the operations and the relations
(page 8) permit only the first two replacements:

t1 >̇ t2 by t1 ≥̇ t2, t1 ˙6= t2,

t1 ˙6= t2 by x ×̇ (t1 −̇ t2) =̇ 1.

Non-standard multiplication thus allows doing without the relations >̇ and ˙6=, but not
without the relation ≥̇. The simplex algorithm is thus as useful as ever!

3It is perhaps surprising that the algebraic numbers are countable. Indeed, they are the real numbers
which are the roots of polynomials with integer coefficients. Let us denote by Pn the set of polynomials
with integer coefficients of the form

∑n

i=0
aixi, with 0 ≥ |ai| ≥ n, for i = 1, . . . , n. The set Pn is finite

and since a polynomial of degree n cannot have more than n roots, the set An of algebraic numbers
definable by Pn is also finite. Since the set of algebraic numbers is equal to

⋃∞
n=1

An, it is countable.
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