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Abstract

The goal of this thesis is the study of a harmonious way to combine any first order theory
with the theory of finite or infinite trees. For that:

First of all, we introduce two classes of theories that we call infinite-decomposable and zero-
infinite-decomposable. We show that these theories are complete and accept a decision procedure
which for every proposition gives either true or false. We show also that these classes of theories
contain a large number of fundamental theories used in computer science, we can cite for example:
the theory of additive rational or real numbers, the theory of the linear dense order without
endpoints, the theory of finite or infinite trees, the construction of trees on an ordered set, and
a combination of trees and ordered additive rational or real numbers.

We give then an automatic way to combine any first order theory T with the theory of finite
or infinite trees. A such hybrid theory is called extension into trees of the theory T and is denoted
by T ∗. After having defined the axiomatization of T ∗ using those of T , we define a new class of
theories that we call flexible and show that if T is flexible then T ∗ is zero-infinite-decomposable
and thus complete. The flexible theories are first order theories having elegant properties which
enable us to handle easily first order formulas. We show among other theories that the theory
Tad of ordered additive rational numbers is flexible and thus that the extension into trees T ∗ad of
Tad is complete.

Finally, we end this thesis by a general algorithm for solving efficiently first order constraints
in T ∗ad. The algorithm is given in the form of 28 rewriting rules which transform every formula
ϕ, which can possibly contain free variables, into a disjunction φ of solved formulas equivalent
to ϕ in T ∗ad and such that φ is either the formula true, or the formula false, or a formula having
at least one free variable and being equivalent neither to true nor to false in T ∗ad. Moreover, the
solutions of the free variables of φ are expressed in a clear and explicit way in φ.

Keywords: Theory of finite or infinite trees, Complete theory, Combination of theories, Solving
first order constraints, Rewriting rules.
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Introduction

The algebra of finite or infinite trees plays a fundamental role in computer science: it is a model for
data structures, program schemes and program executions. As early as 1976, G. Huet proposed
an algorithm for unifying infinite terms, that is solving equations in that algebra [28]. B. Courcelle
has studied the properties of infinite trees in the scope of recursive program schemes [12]. A.
Colmerauer has described the execution of Prolog II, III and IV programs in terms of solving
equations and disequations in that algebra [5, 6, 1]. The unification of finite terms, i.e. the
resolution of conjunctions of equations in the theory of finite trees has first been studied by A.
Robinson [38]. Some better algorithms with better complexities have been proposed after by
M.S. Paterson and M.N.Wegman [36] and A. Martelli and U. Montanari [35]. The resolution
of conjunctions of equations in the theory of infinite trees has been studied by G. Huet [28],
by A. Colmerauer [4, 5] and by J. Jaffar [29]. The resolution of conjunctions of equations and
disequations in the theory of possibly infinite trees has been studied by A. Colmerauer [5] and H.J.
Bürckert [2]. An incremental algorithm for solving conjunctions of equations and disequations
on rational trees has been proposed after by V.Ramachandran and P. Van Hentenryck [37]. On
the other hand, there exists an algorithm for elimination of quantifications which transforms a
first-order formula into a boolean combination of simple constraints. We can refer to the work
of M.J. Maher [33] and H. Comon [11].

M.J. Maher has axiomatized all the cases by complete first-order theories with infinite set
of function symbols [33]. It is this theory which has been the starting point of our works.
After having studied its properties we have created two classes of theories that we call infinite-
decomposable and zero-infinite-decomposable and have shown that a lot of fundamental theories
used in computer science belong to these classes. We can cite for example: the theory of finite
trees, the theory of infinite trees, the theory of finite or infinite trees [19], the theory of the linear
dense order without endpoints, the theory of additive rational or real numbers, the construction
of trees on an ordered set [23] and the combination of finite or infinite trees and ordered additive
rational or real numbers [24]. The first intuitions behind these classes of theories come from the
works of T. Dao [16] which has proposed a general algorithm solving first order constraints in the
theory of finite or infinite trees [16],[19] using a basic simplification of quantified conjunctions of
atomic formulas. We have then generalized this simplification by showing that in every infinite-
decomposable or zero-infinite-decomposable theory, it is always possible to decompose a series of
existential quantifications on a conjunction of atomic formulas, into three embedded sequences
having elegant properties which can be expressed using four special quantifiers denoted by ∃?,
∃!, ∃Ψ(u)

∞ , ∃Ψ(u)
o∞ and called at-most-one, one-and-only-one, infinite and zero-infinite. While the

quantifiers ∃?, ∃!, are just convenient notations, the quantifiers ∃Ψ(u)
∞ , ∃Ψ(u)

o∞ express a property
which can not be expressed in the first order level. The names infinite-decomposable and zero-
infinite-decomposable have not been chosen randomly. In fact, a zero-infinite decomposable
theory is decomposed using only the quantifiers ∃?, ∃!, ∃Ψ(u)

∞ , while a zero-infinite-decomposable

1



Introduction

theory is decomposed using the quantifiers ∃?, ∃!, ∃Ψ(u)
o∞ . After having studied the properties of

these special quantifiers, we have show the completeness of all these classes of theories and given
a decision procedure in the form of general rewriting rules which for every proposition give either
true or false.

We have then interested ourselves to the problem of combination of theories together with
non-disjoint signatures and more exactly to the combination of any first order theory T with
the theory of finite or infinite trees. This work reflects essentially to Prolog III and Prolog IV
which have been modeled by A. Colmerauer [6] using a combination of trees, rational numbers,
booleans and intervals. One of the major difficulties in this combination resides in the fact that
the two combined theories can have non-disjoint signatures, i.e. the existence of at least one
function or relation symbol having two completely different behaviors whether we handle the
theory T or the theory of finite or infinite trees. Moreover, the theory of finite or infinite trees
does not accept full elimination of quantifiers which makes the completeness of any combination
with it not evident. For that, we would first to define a semantic meaning for this combination
and then to give a harmonious axiomatization of the new hybrid theory. In our point of view,
a combination of a theory T with the theory of finite or infinite trees is nothing other than an
extension into trees of the elements of the models of the theory T . Thus, the axiomatization of
the extension into trees of T , denoted by T ∗, proceeds essentially from the axiomatization of the
theory T and the three axioms of Michael Maher on the theory of finite or infinite trees [33] by
introducing typing constraints that distinguish the tree elements from the others. To show the
completeness of T ∗, we have introduced the class of the flexible theories and shown that if T is
flexible then its extension into trees, i.e. T ∗, is a zero-infinite-decomposable theory and thus a
complete theory. The flexible theories are first order theories having elegant properties which
enable us to handle easily first order formulas.

Once these results obtained, we have interested ourselves to build a general algorithm for
solving first order hybrid constraints and which gives solutions of the free variables in a clear
and explicit way. For us, solving a constraint ϕ, which can possibly contain free variables, in T ∗,
means to transform the first order formula ϕ into a disjunction φ of solved formulas, equivalent
to ϕ in T ∗ and such that φ is, either the formula true, or the formula false, or a formula having at
least one free variable and being equivalent neither to true nor to false in T ∗. Of course, the two
decision procedures given for the infinite-decomposable and zero-infinite-decomposable theories
are not able to solve general first order constraints since they can only decide the validity or
not validity of propositions (sentences). They are not able to express the solutions of the solved
formula in a clear and explicit way and do not warrant that any disjunction of solved formulas
containing at least one free variable is equivalent neither to true nor to false in T ∗. We have
then chosen the extension into trees T ∗ad of the theory Tad of ordered additive rational numbers
and have given an efficient algorithm solving any first order constraint in T ∗ad. One of the major
difficulties in this work resides in the fact that (1) every algorithm solving only propositions
in the theory of finite or infinite trees has a non-elementary complexity in the form of tower
of powers of 2 [41], (2) the theory of finite or infinite trees does not accept full elimination of
quantifiers, (3) the function symbols + and − have two completely different behaviors whether
they handle rationals or trees. For example, the individual +(1, 1) is the rational 2, while the
individual +(1, f0) is the tree whose root is labeled + and whose suns are 1 and the tree reduced
to a leaf labeled by f0.

This thesis contains five chapters followed by a conclusion. In Chapter 1 we recall the basic
notions of first order logic and give a sufficient condition for the completeness of any first order
theory.

2



In Chapter 2, we give a formal definition of the infinite-decomposable theories. The main
idea behind this definition consists in decomposing any series of existential quantifications on a
conjunction of atomic formulas, into three embedded sequences having elegant properties which
can be expressed using the special quantifiers ∃?, ∃!, ∃Ψ(u)

∞ . After having given the properties
of these special quantifiers we show the completeness of any infinite-decomposable theory using
the sufficient condition of completeness of first order theories given in Chapter 1. We give also
a decision procedure in any infinite-decomposable theory T , in the form of five rewriting rules
which for every proposition give either true or false in T . The correctness of our algorithm is
another proof of the completeness of the infinite-decomposable theories. We end this chapter by
an application to the theory T of finite or infinite trees. We show that T is infinite-decomposable
and give two examples of solving propositions in T .

In Chapter 3, we present the class of the zero-infinite-decomposable theories which is an
extension of the infinite-decomposable theories by replacing the infinite quantifier by the zero-
infinite quantifier. We show the completeness of any zero-infinite-decomposable theory using the
sufficient condition of completeness of first order theories given in Chapter 1. We give also a
property which links the infinite-decomposable theories to the zero-infinite-decomposable theories
and show that while all the infinite-decomposable theories given in Chapter 2 are also zero-
infinite-decomposable, the simple theory of the linear dense order is not infinite-decomposable
but zero-infinite-decomposable. We present then a decision procedure for every zero-infinite-
decomposable theory T , in the form of six rewriting rules which for every proposition give either
true or false in T . This algorithm contains a new rule comparing with those of the infinite-
decompsoable theories due to the zero-infnite quantifier which enables only a partial elimination
of quantifiers while the infinite-quantifier enables a full elimination of quantifiers. We end this
chapter by an application to the construction of trees on an ordered set. This theory, denoted
by Tord, is a complete axiomatization of the construction of trees on a set of individuals together
with a linear dense order relation without endpoints. After having presented the axiomatization
of Tord, we show its zero-infinite-decomposability and end by an example solving propositions in
Tord.

In Chapter 4, we give an automatic way to combine any first order theory T with the theory
of finite or infinite trees. The axiomatization of the extension into trees of T , denoted by T ∗, is
made essentially from the axiomatization of the theory T and the three axioms of Michael Maher
of the theory of finite or infinite trees [33] as well as a full system of typing constraints. For each
theory T ∗ we give a formal definition of the standard model M∗ of T ∗ using the standard model
M of T . To show the completeness of the theory T ∗, we introduce the flexible theories and show
that if T is flexible, then its extension into trees, i.e. T ∗, is zero-infinite-decomposable and thus
complete. We end this chapter by an application to the extension into trees T ∗ad of the theory
Tad of ordered additive rational numbers. We show that Tad is flexible and thus T ∗ad is complete.

Finally, in Chapter 5, we give a general algorithm solving any first order constraint in the
theory T ∗ad. After having defined the meaning of a first order constraint in T ∗ad, we present our
solver in the form of 28 rewriting rules which transform every formula ϕ into a disjunction φ of
solved formulas, equivalent to ϕ in T ∗ad and such that φ is, either the formula true, or the formula
false, or a formula having at least one free variable and being equivalent neither to true nor to
false in T ∗ad. While the two decision procedures given in Chapter 2 and 3 solve only propositions,
this algorithm gives the solutions of the free variables in a clear and explicit way and is able
to check if a formula having at least one free variable is always true or false in T ∗ad. It also
warrants that every disjunction φ of solved formulas having at least one free variable accepts two
explicit instantiations φ1 and φ2 such that for every model M∗ad of T ∗ad we have M∗ad |= φ1 and

3



Introduction

M∗ad |= ¬φ2. We end this chapter by an example of solving a constraint having two free variables
and being always equivalent in false in T ∗ad.

The sufficient condition for the completeness of first order theories given in Chapter 1, the
quantifiers ∃Ψ(u)

∞ and ∃Ψ(u)
o∞ , the classes of the infinite-decomposable and zero-infinite-decomposable

theories, the extension into trees of first order theories, the flexible theories and the solver in T ∗ad

are our main contributions in this thesis.
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Chapter 1

Preliminaries

Contents
1.1 First order language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Model and theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Complete theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

We present in this chapter the basic definitions of first order logic, model, theory and complete
theory as well as a sufficient condition for the completeness of any first order theory.

1.1 First order language

We are given once and for all, an infinite countable set V of variables and the set L of logical
symbols:

=, true, false,¬,∧,∨,→,↔,∀,∃, (, ).

We are also given once and for all, a signature S, i.e. a set of symbols partitioned into two
subsets: the set of function symbols and the set of relation symbols. To each element s of S is
linked a non-negative integer called arity of s. An n-ary symbol is a symbol with arity n. An
0-ary function symbol is called constant.

A term or S-term is word on L ∪ S ∪ V , of one of the two following forms:

x, ft1 . . . tn, (1.1)

with x taken from V , f an n-ary function symbol taken from F and the ti’s shorter terms.
A formula or S-formula is word on L ∪ S ∪ V of one of the eleven forms:

s = t, rt1 . . . tn, true, false,
¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ),

(∀xϕ), (∃xϕ),
(1.2)

with s and t terms, r an n-ary relation symbol taken from S and ϕ and ψ shorter formulas. The
set of terms and formulas forms a first-order language with equality.

The formulas of the first line of (1.2) are known as atomic, and flat if they are of one of the
following forms:

5



Chapter 1. Preliminaries

true, false, x0 = x1, x0 = fx1...xn, rx1...xn,

where all the xi’s are possibly non-distinct variables taken from V , f is an n-ary function symbol
taken from S and r is an n-ary relation symbol taken from S. An equation is a formula of the
form s = t with s and t terms. A relation is a formula of the form rt1 . . . tn with r an n-ary
relation symbol taken from S and the ti’s terms.

An occurrence of a variable x in a formula is bound if it occurs in a sub-formula of the form
(∀xϕ) or (∃xϕ). It is free in the contrary case. The free variables of a formula are those which
have at least one free occurrence in this formula. A proposition or a sentence is a formula without
free variables. If ϕ is a formula, then we denote by var(ϕ) the set of the free variables of ϕ.

The syntax of the formulas being constraining, we allowed ourselves to use infix notations for
the binary symbols and to add and remove brackets when there are no ambiguities.

We do not distinguish two formulas which can be made equal using the following transfor-
mations of the sub-formulas:

ϕ ∧ ψ =⇒ ψ ∧ ϕ, (ϕ ∧ ψ) ∧ φ =⇒ ϕ ∧ (ψ ∧ φ),
ϕ ∧ true =⇒ ϕ, ϕ ∨ false =⇒ ϕ.

If I is the set {i1, ..., in}, we call conjunction of formulas and write
∧

i∈I ϕi, each formula of
the form ϕi1 ∧ ϕi2 ∧ ... ∧ ϕin ∧ true. In particular, for I = ∅, the conjunction

∧
i∈I ϕi is reduced

to true. We denote by FL the set of the conjunctions of flat formulas. We denote by AT the
set of the conjunctions of atomic formulas. A set Ψ of formulas is closed for the conjunction if
for each formula ϕ ∈ Ψ and each formula φ ∈ Ψ, the formula ϕ ∧ φ belongs to Ψ. All theses
considerations will be useful for the algorithm of resolution given in section 4.

1.2 Model and theory

1.2.1 Model

A model or S-model is a 3-tuple M = (M,F ,R), where M is a nonempty set disjoint from
S, its elements are called individuals of M ; F and R are sets of functions and relations in M,
subscripted by the elements of S. More exactly, if F and R are denoted by (fM )f∈F respectively
(rM )r∈R then:

• M, the universe or domain of M , is a nonempty set disjoint from S, its elements are
called individuals of M ;

• for every n-ary function symbol f taken from F , fM is an n-ary operation in M, i.e. an
application from Mn in M. In particular, when f is a constant, fM belongs to M;

• for every n-ary relation symbol r taken from R, rM is an n-ary relation in M, i.e. a subset
of Mn.

Let M = (M,F ,R) be a model. An M -formula ϕ is a formula built on the signature S ∪M
instead of S, by considering the elements of M as 0-ary function symbols. If for each free variable
x of ϕ, we replace each free occurrence of x by a same element in M, we get an M -formula called
instantiation or valuation of ϕ by individuals of M .

If ϕ is a M -formula, we say that ϕ is true in M and we write

M |= ϕ, (1.3)
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iff for any instantiation ϕ′ of ϕ by individuals of M , the set M has the property expressed by ϕ′,
when we interpret the function and relation symbols of ϕ′ by the corresponding functions and
relations of M and when we give to the logical symbols their usual meaning.

Remark 1.2.1.1 For every M -formula ϕ without free variables, one and only one of the follow-
ing properties holds: M |= ϕ, M |= ¬ϕ.

Let us finish this sub-section by a convenient notation. Let x̄ = x1...xn be a word on V and let
ī = i1...in be a word on M or V of the same length as x̄. If ϕ(x̄) and φ are two M -formulas, then
we denote by ϕ(̄i), respectively φx̄←ī, the M -formula obtained by replacing in ϕ(x̄), respectively
in φ, each free occurrence of xj by ij

1.2.2 Theory

A theory is a (possibly infinite) set of propositions called axioms. We say that the model M is
a model of T , iff for each element ϕ of T , M |= ϕ. If ϕ is a formula, we write

T |= ϕ,

iff for each model M of T , M |= ϕ. We say that the formulas ϕ and ψ are equivalent in T iff
T |= ϕ↔ ψ.

A set Ψ of formulas is called T -closed if:

• Ψ ⊆ AT ,

• Ψ is closed for the conjunction,

• every flat formula ϕ is equivalent in T to a formula which belongs to Ψ and does not contain
other free variables than those of ϕ.

The sets AT and FL are T -closed in any theory T . This notion of T -closed set is useful when
we need to transform formulas of FL into formulas which belong to Ψ. The transformation of
normalized formulas to working formulas defined in Section 2.3.2 illustrates this notion.

1.2.3 Complete theory

A theory T is complete iff for every proposition ϕ, one and only one of the following properties
holds: T |= ϕ, T |= ¬ϕ.

Let us present now a sufficient condition for the completeness of any first-order theory. We
will use the abbreviation wnfv for “without new free variables ". A formula ϕ is equivalent to a
wnfv formula ψ in T means that T |= ϕ ↔ ψ and ψ does not contain other free variables than
those of ϕ.

Property 1.2.3.1 A theory T is complete if there exists a set of formulas, called basic formulas,
such that:

1. every flat formula is equivalent in T to a wnfv Boolean combination of basic formulas,

2. every basic formula without free variables is equivalent in T , either to true or to false,

3. every formula of the form
∃x ((

∧
i∈I ϕi) ∧ (

∧
i∈I′ ¬ϕi)), (1.4)

where the ϕi’s are basic formulas, is equivalent in T to a wnfv Boolean combination of basic
formulas.
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Proof. Let Φ be the set of all the formulas which are equivalent in T to a wnfv Boolean
combination of basic formulas.

Let us show first that every formula ψ belongs to Φ. Let us make a proof by induction on
the syntactic structure of ψ. Without losing generalities we can restrict ourselves to the cases
where ψ contains only flat formulas and the following logical symbols1: ¬, ∧, ∃. If ψ is a flat
formula, then ψ ∈ Φ according to the first condition of the property. If ψ is of the form ¬ϕ1 or
ϕ1 ∧ ϕ2, with ϕ1, ϕ2 ∈ Φ, then ψ ∈ Φ according to the definition of Φ. If ψ is of the form ∃xϕ,
with ϕ ∈ Φ, then according to the definition of Φ, the formula ϕ is equivalent to a wnfv formula
ϕ′, which is a Boolean combination of basic formulas ϕij . Without losing generalities we can
suppose that ϕ′ is of the form

ϕ′ =
∨

i∈I((
∧

j∈J ϕij) ∧ (
∧

j∈J ′ ¬ϕij)). (1.5)

By distributing the existential quantifier, the formula ∃xϕ′ is equivalent in T to∨
i∈I(∃x ((

∧
j∈J ϕij) ∧ (

∧
j∈J ′ ¬ϕij))), (1.6)

which, according to the third condition of the property, belongs to Φ. Thus the formula ∃xϕ,
i.e. ψ, belongs to Φ.

Let now ψ be a proposition. According to what we have just shown ψ ∈ Φ. Thus, the
formula ψ is equivalent in T to a Boolean combination of basic formulas without free variables.
According to the second condition of the property, one and only one of the following properties
holds: T |= ψ, T |= ¬ψ. Thus T is a complete theory.2

This sufficient condition is interesting in sense that it reasons on the syntactic structure of
first-order formulas and not on the semantic meaning of function and relation symbols of the
theory. Informally, the basic formulas are generally formulas of the form ∃x̄α with α ∈ AT .

Corollary 1.2.3.2 If T satisfies the three conditions of Property 1.2.3.1 then every formula is
equivalent in T to a wnfv Boolean combination of basic formulas.

This corollary is a consequence of the proof of Property 1.2.3.1 in which we have shown that if
Φ is the set of all the formulas which are equivalent in T to a wnfv Boolean combination of basic
formulas then every formula ψ belongs to Φ.

1Since each atomic formula is equivalent in the empty theory to a quantified conjunction of flat formulas and
each formula is equivalent in the empty theory to a formula which contains only the logical symbols: ∃, ∧, ¬.
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We present in this chapter a formal definition of the infinite-decomposable theories. The main
idea behind this definition consists in decomposing each quantified conjunction of atomic formulas
into three embedded sequences of quantifications having very particular properties, which can
be expressed with the help of three special quantifiers denoted by ∃?, ∃!, ∃Ψ(u)

∞ and called at-
most-one, exactly-one, infinite. We show the completeness of these theories using the sufficient
condition defined in Chapter 1, and give some examples of fundamental infinite-decomposable
theories. We present also a decision procedure in every infnite-decomposable theory T , in the
form of five rewriting rules which transform any formula ϕ, which can possibly contain free
variables, into a wnfv conjunction φ of solved formulas, equivalent to ϕ in T and such that φ is,
either the formula true, or the formula

∧
i∈I ¬true, or a formula having at least one free variable

and being easily transformable into a boolean combination of conjunctions of quantified atomic
formulas. In particular, if ϕ has no free variables then φ is either the formula true, or the formula
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¬true. The correctness of our algorithm is another proof of the completeness of the decomposable
theories. We end this chapter by an application to the theory T of finite or infinite trees. We
show that T is infinite-decomposable and give two examples of solving first order propositions
in T . Note that the results presented in this chapter have been published in: [18], [19], [22].

2.1 Special quantifiers

2.1.1 Vectorial quantifiers : ∃?, ∃!

Let M be a model and let T be a theory. Let x̄ = x1 . . . xn and ȳ = y1 . . . yn be two words on V
of the same length. Let ψ, φ, ϕ and ϕ(x̄) be M -formulas. We write

∃x̄ ϕ for ∃x1...∃xn ϕ,
∀x̄ ϕ for ∀x1...∀xn ϕ,
∃?x̄ ϕ(x̄) for ∀x̄∀ȳ ϕ(x̄) ∧ ϕ(ȳ) →

∧
i∈{1,...,n} xi = yi,

∃!x̄ ϕ for (∃x̄ ϕ) ∧ (∃?x̄ ϕ).

The word x̄, which can be the empty word ε, is called vector of variables. Note that the formulas
∃?εϕ and ∃!εϕ are respectively equivalent to true and to ϕ in any model M .

Notation 2.1.1.1 Let Q be a vectorial quantifier taken from {∀,∃,∃!,∃?}. Let x̄ be vector of
variables taken from V . Let ϕ and φ be formulas. We write:

Qx̄ϕ ∧ φ for Qx̄ (ϕ ∧ φ).

Example 2.1.1.2 Let I = {1, ..., n} be a finite set. Let ϕ and φi with i ∈ I be formulas. Let x̄
and ȳi with i ∈ I be vectors of variables. We write:

∃x̄ ϕ ∧ ¬φ1 for ∃x̄ (ϕ ∧ ¬φ1),
∀x̄ ϕ ∧ φ1 for ∀x̄ (ϕ ∧ φ1),
∃!x̄ ϕ ∧

∧
i∈I(∃ȳiφi) for ∃!x̄ (ϕ ∧ (∃ȳ1φ1) ∧ ... ∧ (∃ȳnφn) ∧ true),

∃?x̄ ϕ ∧
∧

i∈I ¬(∃ȳiφi) for ∃?x̄ (ϕ ∧ (¬(∃ȳ1φ1)) ∧ ... ∧ (¬(∃ȳnφn)) ∧ true).

Property 2.1.1.3 If T |= ∃?x̄ ϕ then

T |= (∃x̄ ϕ ∧ ¬φ) ↔ ((∃x̄ϕ) ∧ ¬(∃x̄ ϕ ∧ φ)). (2.1)

Proof. Let M be a model of T and let ∃x̄ ϕ′ ∧ ¬φ′ be an instantiation of ∃x̄ ϕ ∧ ¬φ by
individuals of M . Let us denote by ϕ′1 the M -formula (∃x̄ ϕ′ ∧ ¬φ′) and by ϕ′2 the M -formula
(∃x̄ ϕ′) ∧ ¬(∃x̄ϕ′ ∧ φ′). To show the equivalence (2.1), it is enough to show that

M |= ϕ′1 ↔ ϕ′2. (2.2)

If M |= ¬(∃x̄ ϕ′) then M |= ¬ϕ′1 and M |= ¬ϕ′2, thus the equivalence (2.2) holds.
If M |= ∃x̄ ϕ′. Since T |= ∃?x̄ ϕ′, there exists a unique vector ī of individuals of M such that
M |= ϕ′

x̄←ī
. Two cases arise:

If M |= ¬(φ′
x̄←ī

), then M |= (ϕ′ ∧ ¬φ′)x̄←ī, thus M |= ϕ′1. Since ī is unique and since
M |= ¬(φ′

x̄←ī
), there exists no vector ū of individuals of M such that M |= (ϕ′ ∧ φ′)x̄←ū.

Consequently, M |= ¬(∃x̄ ϕ′ ∧ φ′) and thus M |= ϕ′2. We have M |= ϕ′1 and M |= ϕ′2, thus, the
equivalence (2.2) holds.
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If M |= φ′
x̄←ī

, then M |= (ϕ′ ∧ φ′)x̄←ī and thus M |= ¬ϕ′2. Since ī is unique and since M |=
φ′

x̄←ī
, there exists no vector ū of individuals of M such that M |= (ϕ′ ∧ ¬φ′)x̄←ū. Consequently,

M |= ¬(∃x̄ ϕ′∧¬φ′) and thus M |= ¬ϕ′1. We have M |= ¬ϕ′1 andM |= ¬ϕ′2, thus, the equivalence
(2.2) holds.2

Corollary 2.1.1.4 If T |= ∃?x̄ ϕ then

T |= (∃x̄ ϕ ∧
∧
i∈I

¬φi) ↔ ((∃x̄ϕ) ∧
∧
i∈I

¬(∃x̄ ϕ ∧ φi)).

Proof. Let ψ be the formula ¬(
∧

i∈I ¬φi). The formula ∃x̄ ϕ ∧
∧

i∈I ¬φi, is equivalent in
T to ∃x̄ ϕ ∧ ¬ψ. Since T |= ∃?x̄ ϕ, then according to Property 2.1.1.3 the preceding formula is
equivalent in T to (∃x̄ ϕ)∧¬(∃x̄ ϕ∧ψ), which is equivalent in T to (∃x̄ ϕ)∧¬(∃x̄ ϕ∧¬(

∧
i∈I ¬φi)),

thus to (∃x̄ ϕ) ∧ ¬(∃x̄ ϕ ∧ (
∨

i∈I φi)), which is equivalent in T to (∃x̄ ϕ) ∧ ¬(∃x̄ (
∨

i∈I(ϕ ∧ φi))),
thus to (∃x̄ ϕ) ∧ ¬(

∨
i∈I(∃x̄ ϕ ∧ φi)), which is finally equivalent in T to

(∃x̄ ϕ) ∧
∧
i∈I

¬(∃x̄ ϕ ∧ φi).

2

Property 2.1.1.5 If T |= ∃?ȳφ and if all the variables of ȳ has no free occurrences in ϕ then

T |= (∃x̄ ϕ ∧ ¬(∃ȳ φ ∧ ψ)) ↔

(∃x̄ ϕ ∧ ¬(∃ȳ φ))
∨

(∃xy ϕ ∧ φ ∧ ¬ψ)

 . (2.3)

Proof. The formula
∃x̄ ϕ ∧ ¬(∃ȳ φ ∧ ψ),

is equivalent in T to
∃x̄ ϕ ∧ ¬(∃ȳ φ ∧ ¬(¬ψ)),

which according to Property 2.1.1.3 is equivalent in T to

∃x̄ ϕ ∧ ¬((∃ȳ φ) ∧ ¬(∃ȳφ ∧ ¬ψ)),

i.e. to
∃x̄ ϕ ∧ ((¬(∃ȳ φ)) ∨ (∃ȳφ ∧ ¬ψ)),

i.e. to (∃x̄ ϕ ∧ ¬(∃ȳ φ))
∨

(∃x̄ ϕ ∧ (∃ȳφ ∧ ¬ψ))

 .
Since all the variables of ȳ has no free occurrences in ϕ, then the preceding formula is equivalent
in T to (∃x̄ ϕ ∧ ¬(∃ȳ φ))

∨
(∃x̄ȳ ϕ ∧ φ ∧ ¬ψ)

 .
2
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Property 2.1.1.6 If T |= ∃!x̄ ϕ then

T |= (∃x̄ ϕ ∧ ¬φ) ↔ ¬(∃x̄ ϕ ∧ φ).

Corollary 2.1.1.7 If T |= ∃!x̄ ϕ then

T |= (∃x̄ ϕ ∧
∧
i∈I

¬φi) ↔
∧
i∈I

¬(∃x̄ ϕ ∧ φi).

Corollary 2.1.1.8 If T |= ψ → (∃!x̄ ϕ) then

T |= (ψ ∧ (∃x̄ ϕ ∧
∧
i∈I

¬φi)) ↔ (ψ ∧
∧
i∈I

¬(∃x̄ ϕ ∧ φi)).

2.1.2 Infinite quantifier: ∃Ψ(u)
∞

Let M be a model. Let T be a theory. Let ϕ(x) be a M -formula and let Ψ(u) be a set of formulas
having at most u as free variable.

Definition 2.1.2.1 We write
M |= ∃Ψ(u)

∞ xϕ(x), (2.4)

iff for each instantiation ∃xϕ′(x) of ∃xϕ(x) by individuals of M and for each finite subset
{ψ1(u), .., ψn(u)} of elements of Ψ(u), the set of the individuals i of M such that M |= ϕ′(i) ∧∧

j∈{1,...,n} ¬ψj(i) is infinite.

We write T |= ∃Ψ(u)
∞ xϕ(x), iff for each model M of T we have (2.4).

This infinite quantifier holds only for infinite models, i.e. models whose set of elements are
infinite. Note that if Ψ(u) = {false} then (2.4) simply means that M contains an infinite set
of individuals i such that ϕ(i). Informally, the notation (2.4) states that there exists a full
elimination of quantifiers in formulas of the form ∃xϕ(x) ∧

∧
j∈{1,...,n} ¬ψj(x) due to an infinite

set of distinct values of x in M which satisfy this formula. The intuitions behind this definition
come from an aim to eliminate all the quantifiers in formulas of the form ∃x̄ ϕ ∧

∧
i∈I ¬φi where

I is a finite (possibly empty) set and the φi are formulas which do not accept elimination of
quantifiers. The theory of finite or infinite trees presented in Section 2.4 is a good example of
theory which does not accept full elimination of quantifiers. The set Ψ(u) contains in this case
formulas of the form ∃x̄ y = f(x̄) which can not be reduced anymore.

Property 2.1.2.2 Let J be a finite (possibly empty) set and let ϕ(x) and ϕj(x) be M -formulas
with j ∈ J . If T |= ∃Ψ(u)

∞ xϕ(x) and if for each ϕj(x), at least one of the following properties
holds:

• T |= ∃?xϕj(x),

• there exists ψj(u) ∈ Ψ(u) such that T |= ∀xϕj(x) → ψj(x),

then
T |= ∃xϕ(x) ∧

∧
j∈J ¬ϕj(x)
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Proof. Let M be a model of T and let ∃xϕ′(x)∧
∧

j∈J ¬ϕ′j(x) be an instantiation of ∃xϕ(x)∧∧
j∈J ¬ϕj(x) by individuals of M . Suppose that the conditions of Property 2.1.2.2 hold and let

us show that
M |= ∃xϕ′(x) ∧

∧
j∈J ¬ϕ′j(x). (2.5)

Let J ′ be the set of the j ∈ J such that M |= ∃?xϕ′j(x) and let m be the cardinality of
J ′. Since for all j ∈ J ′, M |= ∃?xϕ′j(x), then for each set M′ of individuals of M such that
Cardinality(M′) > m, there exists i ∈M′ such that

M |=
∧

j∈J ′

¬ϕ′j(i). (2.6)

On the other hand, since T |= ∃Ψ(u)
∞ xϕ(x) and according to Definition 2.1.2.1 we know that

for each finite subset {ψ1(u), ..., ψn(u)} of Ψ(u), the set of the individuals i of M such that
M |= ϕ′(i)∧

∧n
k=1 ¬ψk(i) is infinite. Since for all j ∈ J−J ′ we have M |= ∀xϕj(x) → ψj(x), thus,

M |= ∀x (¬ψj(x)) → (¬ϕj(x)), then there exists an infinite set ξ of individuals i of M such that
M |= ϕ′(i) ∧

∧
j∈J−J ′ ¬ϕ′j(i). Since ξ is infinite then Cardinality(ξ) > m, and thus according

to (2.6) there exists at least an individual i ∈ ξ such that M |= ϕ′(i) ∧ (
∧

j∈J−J ′ ¬ϕ′j(i)) ∧
(
∧

k∈J ′ ¬ϕ′k(i)). Thus, we have

M |= ∃xϕ′(x) ∧
∧
j∈J

¬ϕ′j(x).

2

Property 2.1.2.3 If T |= ∃Ψ(u)
∞ xϕ(x) then T |= ∃Ψ(u)

∞ x true.

Proof. Let M be a model of T . If T |= ∃Ψ(u)
∞ xϕ(x) then M |= ∃Ψ(u)

∞ xϕ(x). According to
Definition 2.1.2.1 there exists an infinite set of individuals i such that M |= ϕ(i) ∧

∧
j∈J ¬ϕj(i)

with ϕj(u) ∈ Ψ(u) for all j ∈ J . Thus there exists an infinite set of individuals i such that
M |= true ∧

∧
j∈J ¬ϕj(i), i.e. M |= ∃Ψ(u)

∞ x true and thus T |= ∃Ψ(u)
∞ x true. 2

2.2 Infinite-decomposable theory

2.2.1 Definition

Definition 2.2.1.1 A theory T having at least one model is called infnite-decomposable or quit
simply decomposable, if there exists a set Ψ(u) of formulas having at most u as free variable, a
T -closed set A and three sets A′, A′′ and A′′′ of formulas of the form ∃x̄α with α ∈ A such that:

1. Every formula of the form ∃x̄ α ∧ ψ, with α ∈ A and ψ any formula, is equivalent in T to
a wnfv decomposed formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)),

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′ and ∃x̄′′′ α′′′ ∈ A′′′.

2. If ∃x̄′α′ ∈ A′ then T |= ∃?x̄′ α′ and for each free variable y in ∃x̄′α′, at least one of the
following properties holds:
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• T |= ∃?yx̄′ α′,
• there exists ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄′ α′) → ψ(y).

3. If ∃x̄′′α′′ ∈ A′′ then for each x′′i of x̄′′ we have T |= ∃Ψ(u)
∞ x′′i α

′′.

4. If ∃x̄′′′α′′′ ∈ A′′′ then T |= ∃!x̄′′′ α′′′.

5. If the formula ∃x̄′α′ belongs to A′ and has no free variables then this formula is either the
formula ∃εtrue or ∃εfalse.

Since A is T -closed, then A is a sub-set of AT . While the formulas of A′′ and A′′′ accept full
elimination of quantifiers according to the properties of the quantifiers ∃! and ∃Ψ(u)

∞ , the formulas
of A′ can possibly do not accept elimination of quantifiers. This is due to the second point of
Definition 2.2.1.1 which states that T |= ∃?x̄′α′. The computation of the sets A, A′, A′′, A′′′

and Ψ(u) for a theory T depends on the axiomatization of T . Generally, it is enough to know
solving a formula of the form ∃x̄α with α ∈ FL to get a first intuition on the sets A′, A′′, A′′′

and Ψ(u). Informally, the sets A′, A′′ and A′′′ can be called according to their linked vectorial
quantifier, i.e. A′ is the at most one solution set and contains formulas which accept at most
one solution in T and possibly do not accept full elimination of quantifiers, the set A′′ is the
infinite instantiation set and contains formulas that accept an infinite set of solutions in T . The
set A′′′ is the unique solution set and contains formulas which have one and only solution in T .
The set Ψ(u) contains generally simple formulas of the form ∃x̄α with at most one free variable
and α ∈ A. It can also be reduced for example to the set {faux}. Note that the sets A′ and A′′′

are generally not empty since for each model M of any theory T we have M |= ∃?ε x = y and
M |= ∃!xx = y.

Property 2.2.1.2 Let T be a decomposable theory. Every formula of the form ∃x̄ α, with α ∈ A,
is equivalent in T to a wnfv formula of the form ∃x̄′ α′ with ∃x̄′α′ ∈ A′.

Proof. Let ∃x̄ α be a formula with α ∈ A. According to Definition 2.2.1.1 this formula is
equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)),

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′ and ∃x̄′′′ α′′′ ∈ A′′′. Since ∃x̄′′′ α′′′ ∈ A′′′ then according to
Definition 2.2.1.1 T |= ∃!x̄′′′α′′′ and thus using Corollary 2.1.1.7 (with φ = false) the preceding
formula is equivalent in T to

∃x̄′ α′ ∧ (∃x̄′′ α′′),
which is equivalent in T to

∃x̄′ α′ ∧ (∃x′′1...x′′n−1 (∃x′′n α′′)).

Since ∃x̄′′ α′′ ∈ A′′ then according to Definition 2.2.1.1 we have T |= ∃Ψ(u)
∞ x′′n α

′′ and thus
T |= ∃x′′n α′′. The preceding formula is equivalent in T to

∃x̄′ α′ ∧ (∃x′′1...x′′n−1 true),

which is finally equivalent in T to
∃x̄′ α′.

2

Using Property 2.2.1.2 and the fifth point of Definition 2.2.1.1 we get
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Corollary 2.2.1.3 Let T be a decomposable theory. Every formula, without free variables, of
the form ∃x̄ α, with α ∈ A, is equivalent in T either to true or to false.

Proof. Let ∃x̄ α be a proposition with α ∈ A. According to Property 2.2.1.2, this proposition
is equivalent in T to a proposition of the form ∃x̄′ α′ which belongs to A′. According to the last
point of Definition 2.2.1.1, this proposition is of the form ∃ε true or ∃ε false. Since T has at least
one model, then either T |= ∃x̄ α, or T |= ¬(∃x̄ α). The condition that T has at least a mode is
vital ! In fact, if T has no models then we can have T |= true ↔ false and thus we have both
T |= ∃x̄ α and T |= ¬(∃x̄ α). 2

2.2.2 Completeness

Theorem 2.2.2.1 If T is decomposable then T is complete.

Proof. Let T be a decomposable theory which satisfies the five conditions of Definition 2.2.1.1.
Let us show that T is complete using Property 1.2.3.1 and by taking formulas of the form ∃x̄ α,
with α ∈ A, as basic formulas. Note that according to Definition 2.2.1.1, the sets A′, A′′ and A′′′

contain formulas of the form ∃x̄α with α ∈ A.
Let us show that the first condition of Property 1.2.3.1 holds, i.e. every flat formula is

equivalent to a Boolean combination of basic formulas. According to Definition 2.2.1.1 the set A
is T -closed, i.e. (i) A is closed for the conjunction, (ii) every flat formula is equivalent in T to a
formula which belongs to A. Let α be a flat formula. According to (ii) α is equivalent in T to a
formula β which belongs to A. Since β is equivalent in T to ∃ε β and β ∈ A then α is equivalent
to a basic formula2. Thus, the first condition of Property 1.2.3.1 holds.

Let us show that the second condition of Property 1.2.3.1 holds, i.e. every basic formula
without free variables is either equivalent to true or to false in T . Let ∃x̄ α with α ∈ A be a basic
formula without free variables. According to Corollary 2.2.1.3 either T |= ∃x̄α or T |= ¬(∃x̄ α).
Thus, the second condition of Property 1.2.3.1 holds.

Let us show now that the third condition of Property 1.2.3.1 holds, i.e. every formula of the
form

∃x (
∧

i∈I(∃x̄i αi)) ∧ (
∧

j∈J ¬(∃ȳj βj)), (2.7)

with αi ∈ A for all i ∈ I and βj ∈ A for all j ∈ J , is equivalent in T to a wnfv Boolean
combination of basic formulas, i.e. to a wnfv Boolean combination of formulas of the form ∃x̄α
with α ∈ A. By lifting all the quantifications ∃x̄i after having possibly renamed the variables
which appear in each x̄i, the formula (2.7) is equivalent in T to a wnfv formula of the form

∃x̄ (
∧

i∈I αi) ∧
∧

j∈J ¬(∃ȳj βj),

with αi ∈ A for all i ∈ I and βj ∈ A for all j ∈ J . According to Definition 2.2.1.1 the set A is
T -closed and thus closed under conjunction. The preceding formula is equivalent in T to a wnfv
formula of the form

∃x̄ α ∧
∧

j∈J ¬(∃ȳj βj),

with α ∈ A and βj ∈ A for all j ∈ J . According to the first point of Definition 2.2.1.1 the
preceding formula is equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧
∧

j∈J ¬(∃ȳj βj))),

2Of course a basic formula is a particular case of a Boolean combination of basic formulas.
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Chapter 2. Infinite-decomposable theory

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′, ∃x̄′′′ α′′′ ∈ A′′′ and βj ∈ A for all j ∈ J . Since ∃x̄′′′ α′′′ ∈ A′′′ then
according to the fourth point of Definition 2.2.1.1 T |= ∃!x̄′′′ α′′. Thus, using Corollary 2.1.1.7
the preceding formula is equivalent in T to

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧

j∈J ¬(∃x̄′′′ α′′′ ∧ (∃ȳj βj))).

By lifting all the quantifies ∃ȳj after having possibly renamed the variables which appear in each
ȳj , the preceding formula is equivalent in T to

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧

j∈J ¬(∃x̄′′′∃ȳj α
′′′ ∧ βj)).

According to Definition 2.2.1.1 the sets A′, A′′ and A′′′ contain formulas of the form ∃x̄α with
α ∈ A, thus α′′′ ∈ A. Since βj ∈ A for all j ∈ J and since A is T -closed (i.e. closed for the
conjunction...) then for all j ∈ J the formula α′′′∧βj belongs to A. Thus, the preceding formula
is equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧

j∈J ¬(∃ȳj βj)),

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′, and βj ∈ A for all j ∈ J . According to Corollary 2.2.1.2 the
preceding formula is equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧

j∈J ¬(∃ȳ′j β′j)),

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′, and ∃ȳ′j β′j ∈ A′ for all j ∈ J . Let us denote by J1, the set of the
j ∈ J such that x′′n does not have free occurrences in the formula ∃ȳ′jβ′j . Thus, the preceding
formula is equivalent in T to

∃x̄′ α′ ∧ (∃x′′1...∃x′′n−1

[
(
∧

j∈J1
¬(∃ȳ′j β′j))∧

(∃x′′n α′′ ∧
∧

j∈J−J1
¬(∃ȳ′j β′j))

]
). (2.8)

Since ∃x̄′′ α′′ ∈ A′′ and ∃ȳ′j β′j ∈ A′, then according to Property 2.1.2.2 and the points 2 and 3 of
Definition 2.2.1.1, the formula (2.8) is equivalent in T to

∃x̄′ α′ ∧ (∃x′′1...∃x′′n−1 (true ∧
∧

j∈J1
¬(∃ȳ′j β′j))).

By repeating the three preceding steps (n− 1) times, by denoting by Jk the set of the j ∈ Jk−1

such that x′′(n−k+1) does not have free occurrences in ∃ȳ′j β′j , and by using (n− 1) times Property
2.1.2.3, the preceding formula is equivalent in T to

∃x̄′ α′ ∧
∧

j∈Jn
¬(∃ȳ′j β′j).

Since ∃x̄′ α′ ∈ A′ then according to the second point of Definition 2.2.1.1 T |= ∃?x̄′ α′. Thus,
using Corollary 2.1.1.4 the preceding formula is equivalent in T to

(∃x̄′ α′) ∧
∧

j∈Jn
¬(∃x̄′ α′ ∧ (∃ȳ′j β′j)).

By lifting all the quantifies ∃ȳj after having possibly renamed the variables which appear in each
ȳj , the preceding formula is equivalent in T to

(∃x̄′ α′) ∧
∧

j∈Jn
¬(∃x̄′∃ȳ′j α′ ∧ β′j).
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2.2. Infinite-decomposable theory

According to Definition 2.2.1.1 the sets A′, A′′ and A′′′ contain formulas of the form ∃x̄α with
α ∈ A. Thus, since ∃x̄′ α′ ∈ A′ and ∃ȳ′j β′j ∈ A′ for all j ∈ Jn, then α′ ∈ A and βj ∈ A for
all j ∈ Jn. Since the set A is T -closed, it is closed for the conjunction, then for all j ∈ Jn the
formula α′ ∧ β′j belongs to A and thus, the preceding formula is equivalent in T a wnfv formula
of the form

(∃x̄ α) ∧
∧

j∈Jn
¬(∃ȳjβj),

with α ∈ A and βj ∈ A for all j ∈ Jn. This formula is a Boolean combination of formulas of the
form ∃x̄α with α ∈ A, i.e. a Boolean combination of basic formulas. Note that we have never
added new free variables and we have renamed only the quantified variables. Thus, the third
condition of Property 1.2.3.1 holds.

Since T satisfies the three conditions of Property 1.2.3.1, then T is a complete theory. 2

According to Theorem 2.2.2.1 and Corollary 1.2.3.2, we have the following corollary:

Corollary 2.2.2.2 If T is decomposable and if for all ∃x̄′α′ ∈ A′ we have x̄′ = ε, then T accepts
full elimination of quantifiers.

Proof. Let T a decomposable theory such that for all ∃x̄′α′ ∈ A′ we have x̄′ = ε. Let ϕ be a
formula which can possibly contain free variables. In the proof of Theorem 2.2.2.1 we have shown
that T satisfies the three conditions of Property 1.2.3.1 using formulas of the forms ∃x̄α with
α ∈ A as basic formulas. Thus, according to Corollary 1.2.3.2, the formula ϕ is equivalent in T
to a wnfv Boolean combination of basic formulas, i.e. Boolean combination of formulas of the
form ∃x̄α with α ∈ A. According to Property 2.2.1.2 each of these basic formulas is equivalent
in T to a wnfv formula of the form ∃x̄′α′ which belongs to A′. Since for all ∃x̄′α′ ∈ A′ we have
x̄′ = ε and since α′ ∈ A (according to the structure of the set A′ defined in Definition 2.2.1.1)
then the formula ϕ is equivalent in T to a boolean combination of elements of A. Since T is
decomposable then A is a T -closed set and thus A ⊆ AT . Then, the formula ϕ is equivalent in
T to a wnfv boolean combination φ of conjunctions of atomic formulas. According to the syntax
of the atomic formulas defined in Section 2, it is clear that φ does not contain quantifiers. 2

This corollary makes the connection between the set A′ and the notion of full elimination of
quantifiers. In fact, if T is decomposable and does not accept full elimination of quantifiers then
it is enough to add axioms to T which enable to eliminate all the quantifications of the formulas
of A′ to get a full elimination quantifiers theory. The sets A′′ and A′′′ are not concerned by this
notion since in any decomposable theory T the formulas of A′′ and A′′′ accept full elimination
of quantifiers due to their associated vectorial quantifiers: ∃! and ∃Ψ(u)

∞ . On the other hand, if
T is a decomposable theory which satisfies Corollary 2.2.2.2 then we can interest ourself to get
the smallest sub-set T ∗ of axioms of T , such that T ∗ still accepts full elimination of quantifiers.
For that is is enough to remove axiom by axiom from T and check each time if the theory still
satisfies Corollary 2.2.2.2. This corollary shows also the fact that a decomposable theory T does
not means that T admits full elimination of quantifiers. In fact, the theories of infinite trees,
finite trees and finite or infinite trees as defined by M. Maher [33] do not accept full elimination
of quantifier but are decomposable and thus complete [19].

2.2.3 Fundamental examples

We present in this sub-section two examples of simples decomposable theories. The first one is
a simple axiomatization of an infinite set of distinct individuals with an empty set of function
and relation symbols. This theory denoted by Eq can be seen as a small extension of the Clark
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Chapter 2. Infinite-decomposable theory

equational theory CET [3], even if according to our syntax the equality symbol is considered as a
primitive logical symbol together with its usual properties (commutativity, transitivity ...). The
second theory is the theory of additive rational or real numbers with addition and subtraction.
The goal of these examples is to show the decomposability of simple theories whose properties are
well known and do not need addition of proofs. An other example of a non-simple decomposable
theory (finite or infinite trees) is given in Section 2.4 with a detailed study of the properties of
this theory.

Let us assume for all this sub-section that the variables of V are ordered by a strict linear
dense order relation without endpoints denoted by �.

Equality theory

Let Eq be a theory together with an empty set of function and relation symbols and whose
axioms is the infinite set of propositions of the following form

(1n) ∀x1...∀xn∃y ¬(x1 = y) ∧ ... ∧ ¬(xn = y), (2.9)

where all the variables x1...xn are distinct and (n 6= 0). The form (2.9) is called diagram of
axiom and for each value of n there exists an axiom of Eq. For example the following property
is true in Eq:

Eq |= ∃x¬(x = y) ∧ ¬(x = z).

The theory Eq has as model an infinite set of distinct individuals.
Note that since Eq has an empty set of function and relation symbols, then AT = FL and

thus all the equations of Eq are flat equations. Let x and y be two distinct variables. We call
leader of the equation x = y the variable x. A conjunction α of flat formulas is called (�)-solved
in Eq if: (1) false is not a sub-formula of α, (2) all the equations of α are of the form x = y with3

x � y, (3) each equation of α has a distinct leader which does not occur in the other equations
of α.

Property 2.2.3.1 Every conjunction of flat formulas is equivalent in Eq either to false or to a
(�)-solved conjunction of equations.

Let x, y and z be variables such that x � y � z. The conjunction x = x∧y = z is not (�)-solved
because in the equation x = x we have x 6� x. By the same way, the conjunction x = y∧y = z is
not (�)-solved because y is leader in y = z and occurs also in x = y. The conjunctions true and
x = z∧y = z are (�)-solved. The computation of a possibly (�)-solved conjunction of equations
from a conjunction of flat formulas in Eq is evident4 and proceeds using the usual properties of
the equality (commutativity, substitution, transitivity... ) and by replacing each formula of the
form x = x and α ∧ false by true respectively by false.

Property 2.2.3.2 Let α be a (�)-solved conjunction of equations and x̄ the vector of the leaders
of the equations of α. We have:

1. Eq |= ∃!x̄ α.
3Recall that � is a strict linear dense order relation and thus x 6� x. In other terms x = x is not (�)-solved.
4

(1) y = x =⇒ x = y. (2) x = y ∧ x = z =⇒ x = y ∧ z = y. (3) x = y ∧ z = x =⇒ x = y ∧ z = y.
(4) false ∧ α =⇒ false. (5) x = x =⇒ true.

The rules (1), (2) and (3) are applied only if x � y.
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2.2. Infinite-decomposable theory

2. Eq |= ∃{faux}
∞ x true.

3. For all x ∈ var(α) we have Eq |= ∃?xα.

The first point holds because all the leaders of the equations of α are distinct and have one and
only occurrence in α. Thus, for each instantiation of the right hand sides of each equation, there
exists one and only one value for the left hand sides and thus for the leaders. The second point
is a consequence of the diagram of axiom (2.9) which states that for every finite set of distinct
variables x1...xn there exists a variable y which is different from all the xi. Thus, in each model
of Eq there exists an infinite set of individuals. Thus according to Definition 2.1.2.1 we have
Eq |= ∃{faux}

∞ x true. The third point holds since in a (�)-solved conjunction of equations we
have no formulas of the form x = x (because x 6� x). Thus, using the properties of the equality
for each model of Eq and for each instantiation of the variables of var(α) − {x} either there
exists a unique solution of x or there exists a contradiction in the instantiations and thus there
exists no values for x.

Property 2.2.3.3 The theory Eq is decomposable.

Proof. We show that Eq satisfies the conditions of Definition 2.2.1.1. The sets A, A′, A′′, A′′′

and Ψ(u) are chosen as follows:

• A is the set FL.

• A′ is the set of formulas of the form ∃ε α′ where α′ is either a (�)-solved conjunction of
equations or the formula false.

• A′′ is the set of formulas of the form ∃x̄′′ true.

• A′′′ is the set of formulas of the form ∃x̄′′′α′′′ with α′′′ a (�)-solved conjunction of equations
and x̄′′′ the vector of the leaders of the equations of α′′′.

• Ψ(u) = {false}.

It is obvious that FL is Eq-closed and A′, A′′ and A′′′ contain formulas of the form ∃x̄ α with
α ∈ FL.

Let us show that Eq satisfies the first condition of Definition 2.2.1.1. Let α ∈ FL and ψ a
formula. Let x̄ be a vector of variables. Let us choose an order � such that the variables of x̄
are greater than the free variables of ∃x̄ α. According to Property 2.2.3.1 two cases arise:

Either α is equivalent to false in Eq and thus the formula ∃x̄α ∧ ψ is equivalent in Eq to a
decomposed formula of the form

∃ε false ∧ (∃ε true ∧ (∃ε true ∧ ψ)).

Or, α is equivalent in Eq to a (�)-solved conjunction β of flat formulas. Let Xl be the set
of the variables of x̄ which are leader in the equations of β. Let Xn be the set of the variables
of x̄ which are not leader in the equations of β. The formula ∃x̄α ∧ ψ is equivalent in Eq to a
decomposed formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)), (2.10)

with x̄′ = ε. The formula α′ contains the conjunction of the equations of β whose leaders do not
belong to Xl, i.e. whose leaders are free in ∃x̄β. The vector x̄′′ contains the variables of Xn. The
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formula α′′ is the formula true. The vector x̄′′′ contains the variables of Xl. The formula α′′′ is
the conjunction of the equations of β whose leaders belong to Xl. According to our construction
it is clear that ∃x̄′α′ ∈ A′, ∃x̄′′α′′ ∈ A′′ and ∃x̄′′′α ∈ A′′′. Let us show that (2.10) and ∃x̄α ∧ ψ
are equivalent in Eq. Let X, X ′, X ′′ and X ′′′ be the sets of the variables of the vectors5 x̄, x̄′,
x̄′′ and x̄′′′. If α is equivalent to false in Eq then the equivalence of the decomposition is evident.
Else β is a (�)-solved conjunction of equations and thus according to our construction we have:
X = X ′ ∪ X ′′ ∪ X ′′′, X ′ ∩ X ′′ = ∅, X ′ ∩ X ′′′ = ∅, X ′′ ∩ X ′′′ = ∅, X ′ = ∅, for all x′′i ∈ X ′′ we
have x′′i 6∈ var(α′) and for all x′′′i ∈ X ′′′ we have x′′′i 6∈ var(α′ ∧α′′). This is due to the definition
of the (�)-solved conjunction of flat formulas and the order � which has been chosen such that
the quantified variables of ∃x̄ α are greater than the free variables of ∃x̄ α. On the other hand,
each equation in β occurs in α′∧α′′∧α′′′ and each equation in α′∧α′′∧α′′′ occurs in β and thus
Eq |= β ↔ (α′∧α′′∧α′′′). We have shown that the vectorial quantifications are coherent and the
equivalence Eq |= β ↔ α′ ∧ α′′ ∧ α′′′ holds. According to Property 2.2.3.1 we have Eq |= α↔ β
and thus, the decomposition keeps the equivalence in Eq. Let us decompose for example

∃xyz v = w ∧ z = z ∧ z = x ∧ v = y.

Let us choose the order � such that x � y � z � v � w. Let us (�)-solve the conjunction
v = w ∧ z = z ∧ z = x ∧ v = y. Thus the preceding formula is equivalent in Eq to

∃xyz v = w ∧ x = z ∧ y = w.

Finally this formula is equivalent to the following decomposed formula

∃ε v = w ∧ (∃z true ∧ (∃xy x = z ∧ y = w)).

The theory Eq satisfies the second condition of Definition 2.2.1.1 according to the third point
of Property 2.2.3.2 and using the fact that x̄′ = ε. The theory Eq satisfies the third condition
of Definition 2.2.1.1 according to the second point of Property 2.2.3.2. The theory Eq satisfies
the fourth condition of Definition 2.2.1.1 according to the first point of Property 2.2.3.2. The
theory Eq satisfies the last condition of Definition 2.2.1.1 because A′ is of the form ∃ε α′ where
α′ is either the formula false or a (�)-solved conjunction of equations. Thus, if ∃ε α′ has no free
variables, then either α′ = true or α′ = false. 2

Note that Eq accepts full elimination of quantifiers. In fact Corollary 2.2.2.2 illustrates this
result since for all ∃x̄′α′ ∈ A′ we have x̄′ = ε.

Additive rational or real numbers theory

Let F = {+,−, 0, 1} a set of function symbols of respective arities 2, 1, 0, 0. Let R = ∅ an empty
set of relation symbols. Let Ra be the theory of additive rational or real numbers together with
addition and subtraction. Let a be a positive integer and t1, ..., tn terms.

Notation 2.2.3.4 We denote by:

• Z the set of the integers.

• t1 + t2, the term +t1t2.

• t1 + t2 + t3, the term +t1(+t2t3).
5Of course if x̄ = ε then X = ∅
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• −a.t1, the term (−t1) + · · ·+ (−t1)︸ ︷︷ ︸
a

.

• 0.t1, the term 0.

• a.t1, the term t1 + · · ·+ t1︸ ︷︷ ︸
a

,

•
∑n

i=1 ti, the term t1 + t2 + ...+ tn + 0, where t1 + t2 + ...+ tn is the term t1 + t2 + ...+ tn
in which we have removed all the ti’s which are equal to 0. For n = 0 the term

∑n
i=1 ti is

reduced to the term 0.

The axiomatization of Ra is the set of propositions of one of the 8 following forms:

1 ∀x∀y x+ y = y + x,
2 ∀x∀y∀z x+ (y + z) = (x+ y) + z,
3 ∀xx+ 0 = x,
4 ∀xx+ (−x) = 0,
5n ∀xn.x = 0 → x = 0,
6n ∀x∃!y n.y = x,
7 ∀x∀y∀z (x = y) ↔ (x+ z = y + z),
8 ¬(0 = 1).

with n an non-null integer. This theory has two usual models: rational numbers Q with addition
and subtraction in Q and real numbers R with addition and subtraction in R.

We call block every conjunction α of formulas of the form: true, false,
∑n

i=1 ai.xi = a0.1 with
x1, ..., xn distinct variables and ai ∈ Z for all i ∈ {0, 1, ..., n}. We call leader of an equation of
the form

∑n
i=1 ai.xi = a0.1 the greatest variables xk (k ∈ {1, ..., n}) according to the order �

such that ak 6= 0. A block α is called (�)-solved in Ra if (1) each equation of α has a distinct
leader which does not occur in the other equations of α and (2) α does not contain sub-formulas
of the form 0 = a0.1 or false with a0 ∈ Z. According to the axiomatization of Ra we show easily
that:

Property 2.2.3.5 For all k ∈ {1, ..., n} we have:

Ra |=
n∑

i=1

ai.xi = a0.1 ↔ ak.xk =
n∑

i=1,i6=k

(−ai).xi + a0.1

Property 2.2.3.6 Every block is equivalent in Ra either to false or to a (�)-solved block.

Let x, y and z be variables such that x � y � z. The block 2.x + y = (−1).1 ∧ 2.z + y = 3.1
is not (�)-solved because y is leader in the second equation and occurs also in the first one.
By the same way, the block x + y = 3.1 ∧ 0 = 0.1 is not (�)-solved because 0 = 0.1 occurs in
it. The blocks true and x + 2.z = 2.1 ∧ 3.y + 2.z = 3.1 are (�)-solved. The computation of a
possibly (�)-solved block is evident6 and proceeds using Property 2.2.3.5 and a usual technique
of substitution and simplification by replacing each equation of the form 0 = a0.1 by false if
a0 6= 0 and by true otherwise and every formula of the form false ∧ α by false.

6

(1) 0 = 0.1 =⇒ true. (2) 0 = a0.1 =⇒ false. (3) false ∧ α =⇒ false.

(4)

[∑n

i=1
ai.xi = a0.1∧∑n

i=1
bi.xi = b0.1

]
=⇒

[∑n

i=1
ai.xi = a0.1∧∑n

i=1
(bkai − akbi).xi = (bka0 − akb0).1

]
.

In the rule (2) a0 6= 0. In the rule (4) xk is the leader of the block
∑n

i=1
ai.xi = a0.1 and bk 6= 0.
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Property 2.2.3.7 Let α be a (�)-solved block and x̄ be the vector of the leaders of the equations
of α. We have:

1. Ra |= ∃!x̄ α.

2. Ra |= ∃{faux}
∞ x true.

3. For all x ∈ var(α) we have Ra |= ∃?xα.

The first point holds because all the leaders are distinct and do not occur in the other equations.
Thus, if we transform each equation of the form

∑n
i=1 ai.xi = a0.1 using Property 2.2.3.5 into a

formula of the form ak.xk =
∑n

i=1(−ai).xi +a0.1 with xk the leader of this equation, then we get
a conjunction of equations whose left hand sides are distinct and do not occur in the right hand
sides. Thus, for each instantiation of the right hand sides of these equations there exists one and
only value for the left hand sides and thus for the leaders according to Axiom 6 of Ra. The second
point holds because according to the axiom 8 we have Ra |= ¬(0 = 1) thus using the axiom 7 we
have Ra |= ¬(0+1 = 1+1). Then using the axiom 3 we get Ra |= ¬(1 = 1+1). Thus using the
transitivity of the equality we have Ra |= ¬(0 = 1 + 1). If we repeat the preceding steps n times
we get n different individuals in each model of Ra. Thus for every model of Ra there exists an
infinite set of individuals. Thus according to Definition 2.1.2.1 we have Ra |= ∃{faux}

∞ x true. The
third point is evident according to the form of the blocks and the definition of the (�)-solved
block.

Property 2.2.3.8 The theory Ra is decomposable.

Proof. We show that Ra satisfies the conditions of Definition 2.2.1.1. The sets A, A′, A′′, A′′′

and Ψ(u) are chosen as follows:

• A is the set of blocks.

• A′ is the set of formulas of the form ∃ε α′ where α′ is either a (�)-solved block or the
formula false.

• A′′ is the set of formulas of the form ∃x̄′′ true.

• A′′′ is the set of formulas of the form ∃x̄′′′α′′′ with α′′′ a (�)-solved block and x̄′′′ the vector
of the leaders of the equations of α′′′.

• Ψ(u) = {false}.

Let us denote by BL the set of blocks. It is clear that A′, A′′ and A′′′ contain formulas of the
form ∃x̄ α with α ∈ BL. Let us show that BL is Ra-closed. According to the definition of BL
we have BL ⊆ AT . On the other hand BL is closed for the conjunction. Finally, if α is a flat
formula then : if it is the formula true, false, x = 0 or x = 1 then it is already a block7, else, the
following rules8 transform α into a block:

x = y =⇒ x+ (−1).y = 0.1
x = −y =⇒ x+ y = 0.1
x = y + z =⇒ x+ (−1).y + (−1).z = 0.1

7Because according to Notation 2.2.3.4 the notations 0.1, 1.1 and 1.x represent the terms 0, 1 and x respectively.
8These rules are true in Ra and deduced from the axiomatization of Ra
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2.2. Infinite-decomposable theory

Thus, BL is Ra-closed. Let us show that Ra satisfies the first condition of Definition 2.2.1.1.
Let α ∈ BL and ψ a formula. Let x̄ be a vector of variables. Let us choose an order � such that
the variables of x̄ are greater than the free variables of ∃x̄ α. According to Property 2.2.3.6 two
cases arise:

Either α is equivalent to false in Ra and thus the formula ∃x̄α ∧ ψ is equivalent in Ra to a
decomposed formula of the form

∃ε false ∧ (∃ε true ∧ (∃ε true ∧ ψ)).

Or, α is equivalent in T to a (�)-solved block β. Then, let Xl be the set of the variables of
x̄ which are leader in the equations of β. Let Xn be the set of the variables of x̄ which are not
leader in the equations of β. The formula ∃x̄α ∧ ψ is equivalent in T to a decomposed formula
of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)), (2.11)

with x̄′ = ε. The formula α′ contains the conjunction of the equations of β whose leaders do not
belong to Xl, i.e. whose leaders are free in ∃x̄β. The vector x̄′′ contains the variables of Xn. The
formula α′′ is the formula true. The vector x̄′′′ contains the variables of Xl. The formula α′′′ is
the conjunction of the equations of β whose leaders belong to Xl. According to our construction
it is clear that ∃x̄′α′ ∈ A′, ∃x̄′′α′′ ∈ A′′ and ∃x̄′′′α ∈ A′′′. Let us show that (2.11) and ∃x̄α ∧ ψ
are equivalent in Ra. Let X, X ′, X ′′ and X ′′′ be the sets of the variables of the vectors x̄, x̄′, x̄′′

and x̄′′′. If α is equivalent to false in Ra then the equivalence of the decomposition is evident.
Else β is a (�)-solved block and thus according to our construction we have: X = X ′∪X ′′∪X ′′′,
X ′ ∩X ′′ = ∅, X ′ ∩X ′′′ = ∅, X ′′ ∩X ′′′ = ∅, X ′ = ∅, for all x′′i ∈ X ′′ we have x′′i 6∈ var(α′) and
for all x′′′i ∈ X ′′′ we have x′′′i 6∈ var(α′ ∧ α′′). This is due to the definition of (�)-solved blocks
and the order � which has been chosen such that the quantified variables of ∃x̄ α are greater
than the free variables of ∃x̄ α. On the other hand, each equation of β occurs in α′ ∧ α′′ ∧ α′′′
and each equation in α′ ∧ α′′ ∧ α′′′ occurs in β and thus Ra |= β ↔ (α′ ∧ α′′ ∧ α′′′). We have
shown that the vectorial quantifications are coherent and the equivalence Ra |= β ↔ α′∧α′′∧α′′′
holds. According to Property 2.2.3.6 we have Ra |= α ↔ β and thus, the decomposition keeps
the equivalence in Ra. Let us decompose for example

∃xyz 2.v + w = 3.1 ∧ v + x = 2.1 ∧ v + x+ 2.z = 4.1

Let us choose the order � such that x � y � z � v � w. Let us (�)-solve the block 2.v + w =
3.1 ∧ v + x = 2.1 ∧ v + x+ 2.z = 4.1. Thus the preceding formula is equivalent in Ra to

∃xyz 2.v + w = 3.1 ∧ 2.x+ (−1).w = 1 ∧ z = 1

Finally this formula is equivalent to the following decomposed formula

∃ε 2.v + w = 3.1 ∧ (∃y true ∧ (∃xz 2.x+ (−1).w = 1 ∧ z = 1)).

The theory Ra satisfies the second condition of Definition 2.2.1.1 according to the third point
of Property 2.2.3.7 and using the fact that x̄′ = ε. The theory Ra satisfies the third condition
of Definition 2.2.1.1 according to the second point of Property 2.2.3.7. The theory Ra satisfies
the fourth condition of Definition 2.2.1.1 according to the first point of Property 2.2.3.7. The
theory Ra satisfies the last condition of Definition 2.2.1.1 because A′ is of the form ∃ε α′ where
α′ is either a (�)-solved block or the formula false. Thus, if α′ does not contain free variables
then according to the definition of the (�)-solved blocks α′ does not contain formulas of the form
0 = a01 and thus α′ is either the formula true or the formula false. 2

Note that Ra accepts full elimination of quantifiers. In fact Corollary 2.2.2.2 illustrates this
result since for all ∃x̄′α′ ∈ A′ we have x̄′ = ε.
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2.3 A decision procedure in infinite-decomposable theories

Let T be a decomposable theory together with its set of function symbols F and its set of relation
symbols R. The sets Ψ(u), A, A′, A′′ and A′′′ are now known and fixed.

2.3.1 Normalized formula

Definition 2.3.1.1 A normalized formula ϕ of depth d ≥ 1 is a formula of the form

¬(∃x̄ α ∧
∧
i∈I

ϕi), (2.12)

with I a finite (possibly empty) set, α ∈ FL and the ϕ′is are normalized formulas of depth di with
d = 1 + max{0, d1, ..., dn} and all the quantified variables of ϕ have distinct names and different
from the names of the free variables.

Example 2.3.1.2 Let f and g two 1-ary function symbol which belong to F . The formula

¬
[
∃εtrue ∧

[
¬(∃x y = fx ∧ x = y ∧ ¬(∃ε y = gx))∧
¬(∃ε x = z)

]]

is a normalized formula of depth equals to three. The formulas ¬(∃ε true) and ¬(∃ε false) are
two normalized formulas of depth 1. The smallest value of a depth of a normalized formula is 1.
Normalized formulas of depth 0 are not defined and do not exist.

Property 2.3.1.3 Every formula ϕ is equivalent in T to a wnfv normalized formula of depth
d ≥ 1.

Proof. It is easy to transform any formula into a wnfv normalized formula, it is enough for
example to follow the followings steps:

1. Introduce a supplement of equations and existentially quantified variables to transform the
conjunctions of equations and relations into conjunctions of flat formulas.

2. Express all the quantifiers, constants and logical connectors with ¬, ∧ and ∃, using the
following transformations9 of sub-formulas :

(ϕ ∨ φ) =⇒ ¬(¬ϕ ∧ ¬φ),
(ϕ→ φ) =⇒ ¬(ϕ ∧ ¬φ),
(ϕ↔ φ) =⇒ (¬(ϕ ∧ ¬φ) ∧ ¬(φ ∧ ¬ϕ)),
(∀xϕ) =⇒ ¬(∃x¬ϕ).

3. If the formula ϕ obtained does not start with the logical symbol ¬, then replace it by
¬(∃ε true ∧ ¬ϕ).

4. Name the quantified variables by distinct names and different from the names of the free
variables.

5. Lift the quantifier before the conjunction, i.e. ϕ ∧ (∃x̄ ψ) or (∃x̄ ψ) ∧ ϕ, becomes ∃x̄ ϕ ∧ ψ
because the free variables of ϕ are distinct from those of x̄.

9These equivalences are true in the empty theory and thus in any theory T .
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6. Group quantified variables into a vectorial quantifier, i.e. ∃x̄(∃ȳ ϕ) or ∃x̄∃ȳ ϕ becomes
∃xy ϕ.

7. Insert empty vectors and formulas of the form true to get the normalized form using the
following transformations of sub-formulas:

¬(
∧
i∈I

¬ϕi) =⇒ ¬(∃ε true ∧
∧
i∈I

¬ϕi), (2.13)

¬(α ∧
∧
i∈I

¬ϕi) =⇒ ¬(∃ε α ∧
∧
i∈I

¬ϕi), (2.14)

¬(∃x̄
∧
j∈J

¬ϕj) =⇒ ¬(∃x̄ true ∧
∧
j∈J

¬ϕj). (2.15)

with α ∈ FL, I a finite (possibly empty) set and J a finite non-empty set.

If the starting formula does not contain the logical symbol ↔ then this transformation will be
linear, i.e. there exists a constant k such that n2 ≤ kn1, where n1 is the size of the starting
formula and n2 the size of the normalized formula. We show easily by contradiction that the
final formula obtained after application of these steps is normalized. 2

Example 2.3.1.4 Let f be a 2-ary function symbols which belong to F . Let us apply the pre-
ceding steps to transform the following formula into a normalized formula which is equivalent in
T :

(fuv = fwu ∧ (∃xu = x)) ∨ (∃u ∀wu = fvw).

Note that the formula does not start with ¬ and the variables u and w are free in fuv =
fwu ∧ (∃xu = x) and bound in ∃u ∀wu = fvw.
Step 1: Let us first transform the equations into flat equations. The preceding formula is equiva-
lent in T to

(∃u1 u1 = fuv ∧ u1 = fwu ∧ (∃xu = x)) ∨ (∃u ∀w u = fvw). (2.16)

Step 2: Let us now express the quantifier ∀ with ¬, ∧ and ∃. Thus, the formula (2.16) is
equivalent in T to

(∃u1 u1 = fuv ∧ u1 = fwu ∧ (∃xu = x)) ∨ (∃u¬(∃w¬(u = fvw))).

Let us also express the logical symbol ∨ with ¬, ∧ and ∃. The preceding formula is equivalent in
T to

¬(¬(∃u1 u1 = fuv ∧ u1 = fwu ∧ (∃xu = x)) ∧ ¬(∃u¬(∃w¬(u = fvw)))). (2.17)

Step 3: The formula starts with ¬, then we move to Step 4.
Step 4: The quantified variables u and w in (∃u¬(∃w¬(u = fvw))) must be renamed. Thus, the
formula (2.17) is equivalent in T to

¬(¬(∃u1 u1 = fuv ∧ u1 = fwu ∧ (∃xu = x)) ∧ ¬(∃u2 ¬(∃w1 ¬(u2 = fvw1)))).

Step 5: By lifting the existential quantifier ∃x, the preceding formula is equivalent in T to

¬(¬(∃u1 ∃xu1 = fuv ∧ u1 = fwu ∧ u = x) ∧ ¬(∃u2 ¬(∃w1 ¬(u2 = fvw1)))).
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Step 6: Let us group the two quantified variables x and u1 into a vectorial quantifier. Thus, the
preceding formula is equivalent in T to

¬(¬(∃u1xu1 = fuv ∧ u1 = fwu ∧ u = x) ∧ ¬(∃u2 ¬(∃w1 ¬(u2 = fvw1)))).

Step 7: Let us introduces empty vectors of variables and formulas of the form true to get the
normalized formula. According to the rule (2.13), the preceding formula is equivalent in T to

¬
[
∃ε true ∧

[
¬(∃u1xu1 = fuv ∧ u1 = fwu ∧ u = x)∧
¬(∃u2 ¬(∃w1 ¬(u2 = fvw1)))

]]
,

then using the rule (2.14) it is equivalent to

¬
[
∃ε true ∧

[
¬(∃u1xu1 = fuv ∧ u1 = fwu ∧ u = x)∧
¬(∃u2 ¬(∃w1 ¬(∃ε u2 = fvw1)))

]]
,

and finally using the rule (2.15) it is equivalent to

¬
[
∃ε true ∧

[
¬(∃u1xu1 = fuv ∧ u1 = fwu ∧ u = x)∧
¬(∃u2 true ∧ ¬(∃w1 true ∧ ¬(∃ε u2 = fvw1)))

]]
,

This is a normalized formula of depth 4.

2.3.2 Working formula

Definition 2.3.2.1 A working formula ϕ of depth d ≥ 1 is a formula of the form

¬(∃x̄ α ∧
∧
i∈I

ϕi), (2.18)

with I a finite (possibly empty) set, α ∈ A and the ϕ′is are working formulas of depth di with
d = 1 + max{0, d1, ..., dn} and all the quantified variables of ϕ have distinct names and different
from the names of the free variables.

Property 2.3.2.2 Every formula is equivalent in T to a wnfv working formula.

Proof. Let ϕ be a formula. According to Property 2.3.1.3 ϕ is equivalent in T to a wnfv
normalized formula φ of the form

¬(∃x̄ α ∧
∧
i∈I

ϕi), (2.19)

with α ∈ FL and all the ϕi are normalized formulas. Since T is decomposable then according to
Definition 2.2.1.1 the set A is T -closed, i.e. (i) A ⊆ AT , (ii) A is closed for the conjunction and
(iii) every flat formula is equivalent in T to a formula which belongs to A. Since α ∈ FL, then
according to (iii) α is equivalent in T to a conjunction β of elements of A. According to (ii) β
belongs to A. Thus, the formula (2.19) is equivalent in T to

¬(∃x̄ β ∧
∧
i∈I

ϕi), (2.20)

with β ∈ A. By repeating the preceding steps recursively on each sub-normalized formula ϕi of
(2.20) we get a working formula. 2
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Example 2.3.2.3 In the theory Ra of additive rational numbers, the formula

¬
[
∃ε true ∧

[
¬(∃x y = −z ∧ z = x+ y)∧
¬(∃ true ∧ ¬(∃w true ∧ ¬(∃ε z = w)))

]]
,

is a normalized formula of depth 4 which is equivalent in Ra to the following working formula

¬
[
∃ε true ∧

[
¬(∃x y + z = 0.1 ∧ z + (−1).x+ (−1).y = 0.1)∧
¬(∃ true ∧ ¬(∃w true ∧ ¬(∃ε z + (−1).w = 0.1)))

]]
.

The formula ¬(∃ε z + (−1).w = 0.1) is a sub-working formula.

Definition 2.3.2.4 A solved formula is a working formula of the form

¬(∃x̄′ α′ ∧
∧
i∈I

¬(∃ȳ′i β′i)), (2.21)

with I a finite (possibly empty) set, ∃x̄′α′ ∈ A′, ∃ȳ′iβ′i ∈ A′ for all i ∈ I, α′ different from the
formula false and all the β′i are different from the formulas true and false.

Property 2.3.2.5 Let ϕ be a conjunction of solved formulas without free variables. The con-
junction ϕ is either the formula ¬true or the formula true.

Proof. Recall first that we write
∧

i∈I ϕi, and call conjunction each formula of the form
ϕi1 ∧ ϕi2 ∧ ... ∧ ϕin ∧ true. Let ϕ be a conjunction of solved formulas without free variables.
According to Definition 2.3.2.4, ϕ is of the form

(
∧
i∈I

¬(∃x̄′iα′i ∧
∧

j∈Ji

¬(∃ȳ′ijβ′ij))) ∧ true (2.22)

with

1. I a finite (possibly empty) set,

2. (∃x̄′iα′i) ∈ A′ for all i ∈ I,

3. (∃ȳ′ijβ′ij) ∈ A′ for all i ∈ I and j ∈ Ji,

4. α′i different from false for all i ∈ I,

5. β′ij different from true and false for all i ∈ I and j ∈ Ji.

Since these solved formulas don’t have free variables and since T is a decomposable theory then
according to the fifth point of Definition 2.2.1.1 of a decomposable theory and the conditions 2
and 3 of (2.22) we have:
(*) each formula ∃x̄′iα′i and each formula ∃ȳ′ijβ′ij is either the formula ∃εtrue or ∃εfalse.
According to (*) and the condition 5 of (2.22), all the sets Ji must be empty, thus ϕ is of the
form

(
∧
i∈I

¬(∃x̄′iα′i)) ∧ true (2.23)

According to (*) and (2.23), the formula ϕ is of the form

(
∧
i∈I′

¬(∃εfalse)) ∧ (
∧

j∈I−I′

¬(∃εtrue)) ∧ true
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According to the condition 4 of (2.22), the set I ′ must be empty and thus ϕ is of the form

(
∧
i∈I

¬(∃εtrue)) ∧ true

If I = ∅ then ϕ is the formula true, else, according to our assumptions, we do not distinguish
two formulas which can be made equal using the following transformation of the sub-formulas:

ϕ ∧ ϕ =⇒ ϕ, ϕ ∧ ψ =⇒ ψ ∧ ϕ, (ϕ ∧ ψ) ∧ φ =⇒ ϕ ∧ (ψ ∧ φ),
ϕ ∧ true =⇒ ϕ, ϕ ∨ false =⇒ ϕ.

Thus ϕ is the formula
¬true

2

Property 2.3.2.6 Every solved formula is equivalent in T to a wnfv Boolean combination of
elements of A′.

Proof. Let ϕ be a solved formula. According to Definition 2.3.2.4, the formula ϕ is of the form

¬(∃x̄′ α′ ∧
∧
i∈I

¬(∃ȳ′i β′i)),

with ∃x̄′α′ ∈ A′ and ∃ȳ′iβ′i ∈ A′ for all i ∈ I. Since ∃x̄′α′ ∈ A′ then according to Definition
2.2.1.1 T |= ∃?x̄′α′ and thus according to Corollary 2.1.1.4, ϕ is equivalent in T to the following
wnfv formula

¬((∃x̄′ α′) ∧
∧
i∈I

¬(∃x̄′ α′ ∧ (∃ȳ′i β′i))).

According to the definition of working formulas all the quantified variables of ϕ have distinct
names and different from the names of the free variables, thus the preceding formula is equivalent
in T to the wnfv formula

¬((∃x̄′ α′) ∧
∧
i∈I

¬(∃x̄′ȳ′i α′ ∧ β′i)).

Since ∃x̄′α′ ∈ A′ and ∃ȳ′iβ′i ∈ A′ for all i ∈ I, then α′ ∈ A and β′i ∈ A. Since A is T -closed then
it closed for the conjunction and thus α′ ∧ β′i ∈ A for all i ∈ I. According to Property 2.2.1.2
the preceding formula is equivalent in T to a wnfv formula of the form

¬((∃x̄′ α′) ∧
∧
i∈I

¬(∃z̄′i δ′i)),

with ∃x̄′α′ ∈ A′ and ∃z̄′iδ′i ∈ A′ for all i ∈ I. Which is finally equivalent in T to

(¬(∃x̄′ α′)) ∨
∨
i∈I

(∃z̄′i δ′i).

2
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2.3.3 The rewriting rules

We present now the rewriting rules which transform a working formula ϕ of any depth d into a
wnfv conjunction φ of solved formulas which is equivalent to ϕ in T . To apply the rule p1 =⇒ p2

to the working formula pmeans to replace in p, a sub-formula p1 by the formula p2, by considering
that the connector ∧ is associative and commutative.

(1) ¬
[
∃x̄ α ∧ ϕ∧

¬(∃ȳ true)

]
=⇒ true

(2) ¬
[
∃x̄ false ∧ ϕ

]
=⇒ true

(3) ¬
[
∃x̄ α∧∧

i∈I ¬(∃ȳi βi)

]
=⇒ ¬

[
∃x̄′x̄′′ α′ ∧ α′′∧∧

i∈I ¬(∃x̄′′′ȳi α
′′′ ∧ βi)∗

]

(4) ¬
[
∃x̄ α∧∧

i∈I ¬(∃ȳ′i β′i)

]
=⇒ ¬

[
∃x̄′ α′∧∧

i∈I′ ¬(∃ȳ′i β′i)

]

(5) ¬


∃x̄ α ∧ ϕ∧

¬
[
∃ȳ′ β′∧∧

i∈I ¬(∃z̄′i δ′i)

]  =⇒
[
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧∧

i∈I ¬(∃x̄ȳ′z̄′i α ∧ β′ ∧ δ′i ∧ ϕ)∗

]

with α ∈ A, ϕ a conjunction of working formulas and I a finite (possibly empty) set. In the rule
(3), the formula ∃x̄ α is equivalent in T to a decomposed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
(∃x̄′′′ α′′′)) with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′, ∃x̄′′′ α′′′ ∈ A′′′ and ∃x̄′′′ α′′′ different from ∃ε true. All
the βi’s belong to A. The formula (∃x̄′′′ȳi α

′′′ ∧ βi)∗ is the formula (∃x̄′′′ȳi α
′′′ ∧ βi) in which we

have renamed the variables of x̄′′′ by distinct names and different from the names of the free
variables. In the rule (4), the formula ∃x̄ α is not an element of A′ and is equivalent in T to a
decomposed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃ε true)) with ∃x̄′ α′ ∈ A′ and ∃x̄′′ α′′ ∈ A′′.
Each formula ∃ȳ′i β′i is an element of A′. I ′ is the set of the i ∈ I such that ∃ȳ′iβ′i does not have
free occurrences of any variables of x̄′′. In the rule (5), I 6= ∅, ∃ȳ′ β′ ∈ A′ and ∃z̄′i δ′i ∈ A′ for all
i ∈ I. The formula (∃x̄ȳ′z̄′i α ∧ β′ ∧ δ′i ∧ ϕ)∗ is the formula (∃x̄ȳ′z̄′i α ∧ β′ ∧ δ′i ∧ ϕ) in which we
have renamed the variables of x̄ and ȳ′ by distinct names and different from the names of the
free variables.

Property 2.3.3.1 Every repeated application of the preceding rewriting rules on any working
formula ϕ, terminates and produces a wnfv conjunction φ of solved formulas which is equivalent
to ϕ in T .

Proof, first part: The application of the rewriting rules terminates. Let us consider the 3-tuples
(n1, n2, n3) where the ni’s are the following positive integers:

• n1 = α(p), where the function α is defined as follows:

– α(true) = 0,
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– α(¬(∃x̄ a ∧ ϕ)) = 2α(ϕ),

– α(
∧

i∈I ϕi) =
∑

i∈I α(ϕi),

with a ∈ A, ϕ a conjunction of working formulas and the ϕi’s working formulas. Note that
if α(p2) < α(p1) then α(p[p2]) < α(p) where p[p2] is the formula obtained from p when we
replace the occurrence of the formula p1 in p by p2. This function has been introduced in
[41] and [7] to show the non-elementary complexity of every algorithm solving propositions
in the theory of finite or infinite trees. It has also the property to decrease if the depth of
the working formula decreases after application of distribution as it is done in our rule (5).

• n2 = β(p), where the function β is defined as follows:

– β(true) = 0,

– β(¬(∃x̄ a ∧
∧

i∈I ϕi)) =

{
41+

∑
i∈I

β(ϕi) if ∃x̄′′′α′′′ 6= ∃εtrue,
1 +

∑
i∈I β(ϕi) if ∃x̄′′′α′′′ = ∃εtrue

}
with the ϕi’s working formulas and T |= (∃x̄α) ↔ (∃x̄′α′ ∧ (∃x̄′′α′′ ∧ (∃x̄′′′α′′′))).

We show that:

β(¬(∃x̄ α ∧
∧
i∈I

¬(∃ȳi λi))) > β(¬(∃z̄δ ∧
∧
i∈I

¬(∃wi γi)))

where the formula ∃x̄ α is equivalent in T to a decomposed formula of the form ∃x̄′α′ ∧
(∃x̄′′α′′ ∧ (∃x̄′′′ α′′′)) with ∃x̄′′′ α′′′ 6= ∃ε true, the formula ∃z̄ δ is equivalent in T to a
decomposed formula of the form ∃z̄′ δ′ ∧ (∃z̄′′ δ′′ ∧ (∃ε true)) and all the λi and γi belong
to A and have no particular conditions.

• n3 is the number of the sub-formulas of the form ¬(∃x̄α ∧ ϕ) with ∃x̄α 6∈ A′ and ϕ a
conjunction of working formulas.

For each rule, there exists a row i such that the application of this rule decreases or does not
change the values of the nj ’s, with 1 ≤ j < i, and decreases the value of ni. The row i is equal
to: 1 for the rules (1), (2) and (5), 2 for the rule (3) and 3 for the rule (4). To each sequence
of formulas obtained by a finite application of the preceding rewriting rules, we can associate a
series of 3-tuples (n1, n2, n3) which is strictly decreasing in the lexicographic order. Since the
ni’s are positive integers, they cannot be negative, thus, this series of 3-tuples is a finite series
and the application of the rewriting rules terminates.

Proof, second part: Let us show now that for each rule of the form p =⇒ p′ we have T |= p↔ p′

and the formula p′ remains a conjunction of working formulas. It is clear that the rules (1) and
(2) are correct.

Correctness of the rule (3):

¬
[
∃x̄ α∧∧

i∈I ¬(∃ȳi βi)

]
=⇒ ¬

[
∃x̄′x̄′′ α′ ∧ α′′∧∧

i∈I ¬(∃x̄′′′ȳi α
′′′ ∧ βi)

]
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where the formula ∃x̄ α is equivalent in T to a decomposed formula of the form ∃x̄′ α′∧ (∃x̄′′ α′′∧
(∃x̄′′′ α′′′)) with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′, ∃x̄′′′ α′′′ ∈ A′′′ and ∃x̄′′′ α′′′ different from ∃ε true.

Let us show the correctness of this rule. According to the conditions of application of this
rule, the formula ∃x̄ α is equivalent in T to a decomposed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
(∃x̄′′′ α′′′)) with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′, ∃x̄′′′ α′′′ ∈ A′′′ and ∃x̄′′′ α′′′ different from ∃ε true.
Thus, the left formula of this rewriting rule is equivalent in T to the formula

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧ (∃x̄′′′α′′′ ∧
∧
i∈I

¬(∃ȳi βi)))).

Since ∃x̄′′′ α′′′ ∈ A′′′, then according to the fourth point of Definition 2.2.1.1 we have T |= ∃!x̄′′′α′′′,
thus using Corollary 2.1.1.7 the preceding formula is equivalent in T to

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧
i∈I

¬(∃x̄′′′α′′′ ∧ (∃ȳi βi))))

According to the definition of the working formula the quantified variables have distinct names
and different from the names of the free variables, thus, we can lift the quantifications and then
the preceding formula is equivalent in T to

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧
i∈I

¬(∃x̄′′′ȳi α
′′′ ∧ βi)))

i.e. to
¬(∃x̄′x̄′′ α′ ∧ α′′ ∧

∧
i∈I

¬(∃x̄′′′ȳi α
′′′ ∧ βi)∗),

where the formula (∃x̄′′′ȳi α
′′′ ∧ βi)∗ is the formula (∃x̄′′′ȳi α

′′′ ∧ βi) in which we have renamed
the variables of x̄′′′ by distinct names and different from the names of the free variables. Thus,
the rewriting rule (3) is correct in T .

Correctness of the rule (4):

¬
[
∃x̄ α∧∧

i∈I ¬(∃ȳ′i β′i)

]
=⇒ ¬

[
∃x̄′ α′∧∧

i∈I′ ¬(∃ȳ′i β′i)

]

where the formula ∃x̄ α is not an element of A′ and is equivalent in T to a decomposed formula
of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃ε true)) with ∃x̄′ α′ ∈ A′ and ∃x̄′′ α′′ ∈ A′′. Each formula ∃ȳ′i β′i
is an element of A′. I ′ is the set of the i ∈ I such that ∃ȳ′iβ′i does not have free occurrences of
any variables of x̄′′.

Let us show the correctness of this rule. According to the conditions of application of this
rule, the formula ∃x̄ α is equivalent in T to a decomposed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
(∃ε true)) with ∃x̄′ α′ ∈ A′ and ∃x̄′′ α′′ ∈ A′′. Moreover, each formula ∃ȳ′i β′i belongs to A′. Thus,
the left formula of this rewriting rule is equivalent in T to the formula

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧
i∈I

¬(∃ȳ′i β′i)))

Let us denote by I1, the set of the i ∈ I such that x′′n does not have free occurrences in the
formula ∃ȳ′iβ′i, thus, the preceding formula is equivalent in T to

¬(∃x̄′α′ ∧ (∃x′′1...∃x′′n−1

[
(
∧

i∈I1 ¬(∃ȳ′iβ′i))∧
(∃x′′n α′′ ∧

∧
i∈I−I1 ¬(∃ȳ′iβ′i))

]
)). (2.24)
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Since ∃x̄′′α′′ ∈ A′′ and ∃ȳ′iβ′i ∈ A′ for every i ∈ I − I1, then according to Property 2.1.2.2 and
the conditions 2 and 3 of Definition 2.2.1.1, the formula (2.24) is equivalent in T to

¬(∃x̄′α′ ∧ (∃x′′1...∃x′′n−1 (true ∧
∧

i∈I1 ¬(∃ȳ′iβ′i)))). (2.25)

By repeating the three preceding steps (n − 1) times, by denoting by Ik the set of the i ∈ Ik−1

such that x′′(n−k+1) does not have free occurrences in ∃ȳ′iβ′i, and by using (n− 1) times Property
2.1.2.3, the preceding formula is equivalent in T to

¬(∃x̄′α′ ∧
∧

i∈In
¬(∃ȳ′iβ′i)),

Thus, the rule (4) is correct in T .

Correctness of the rule (5):

¬


∃x̄ α ∧ ϕ∧

¬
[
∃ȳ′ β′∧∧

i∈I ¬(∃z̄′i δ′i)

]  =⇒
[
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧∧

i∈I ¬(∃x̄ȳ′z̄′i α ∧ β′ ∧ δ′i ∧ ϕ)∗

]

where I 6= ∅ and the formulas ∃ȳ′ β′ and ∃z̄′i δ′i are elements of A′ for all i ∈ I.
Let us show the correctness of this rule. Since ∃ȳ′β′ ∈ A′ then according to the second point

of Definition 2.2.1.1 we have T |= ∃?ȳ′β′, thus, using Corollary 2.1.1.4 the preceding formula is
equivalent to

¬

 ∃x̄ α ∧ ϕ∧

¬
[

(∃ȳ′ β′) ∧
∧

i∈I ¬(∃ȳ′ β′ ∧ (∃z̄′i δ′i))
] 

According to the definition of the working formula the quantified variables have distinct names
and different from the names of the free variables, thus we can lift the quantifications and then
the preceding formula is equivalent in T to

¬

 ∃x̄ α ∧ ϕ∧

¬
[

(∃ȳ′ β′) ∧
∧

i∈I ¬(∃ȳ′z̄′i β′ ∧ δ′i)
] 

thus to

¬

 ∃x̄ α ∧ ϕ∧[
(¬(∃ȳ′ β′)) ∨

∨
i∈I(∃ȳ′z̄′i β′ ∧ δ′i)

] 
After having distributed the ∧ on the ∨ and lifted the quantification ∃ȳ′z̄′i we get

¬
[

(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∨∨
i∈I(∃x̄ȳ′z̄′i α ∧ ϕ ∧ β′ ∧ δ′i)

]

which is equivalent in T to [
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧∧

i∈I ¬(∃x̄ȳ′z̄′i α ∧ ϕ ∧ β′ ∧ δ′i)

]
(2.26)

In order to satisfy the definition of the working formulas we must rename the variables of x̄
and ȳ′ by distinct names and different from the names of the free variables. Let us denote by
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(∃x̄ȳ′z̄′i α∧ϕ∧β′∧δ′i)∗ the formula (∃x̄ȳ′z̄′i α∧ϕ∧β′∧δ′i) in which we have renamed the variables
of x̄ and ȳ′. Thus, the formula (2.26) is equivalent in T to[

¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧∧
i∈I ¬(∃x̄ȳ′z̄′i α ∧ ϕ ∧ β′ ∧ δ′i)∗

]

Thus, the rule (5) is correct in T . It is very important to note that all the rewriting rules preserve
the equivalence of the formulas without adding new free variables.

Proof, third part: Every finite application of the rewriting rules on a working formula produces
a wnfv conjunction of solved formulas.

Recall that we write
∧

i∈I ϕi, and call conjunction each formula of the form ϕi1 ∧ ϕi2 ∧ ... ∧
ϕin ∧ true. In particular, for I = ∅, the conjunction

∧
i∈I ϕi is reduced to true. Moreover, we do

not distinguish two formulas which can be made equal using the following transformation of the
sub-formulas:

ϕ ∧ ϕ =⇒ ϕ, ϕ ∧ ψ =⇒ ψ ∧ ϕ, (ϕ ∧ ψ) ∧ φ =⇒ ϕ ∧ (ψ ∧ φ),
ϕ ∧ true =⇒ ϕ, ϕ ∨ false =⇒ ϕ.

Let us show first that every substitution of a sub-working formula of a conjunction of working
formulas by a conjunction of working formulas produces a conjunction of working formulas. Let∧

i∈I ϕi be a conjunction of working formulas. Let ϕk with k ∈ I an element of this conjunction
of depth dk. Two cases arise:

1. Either we replace ϕk by a conjunction of working formulas. Thus, let
∧

j∈Jk
φj be a con-

junction of working formulas which is equivalent to ϕk in T . The conjunction of working
formulas

∧
i∈I ϕi is equivalent in T to

(
∧

i∈I−{k}
ϕi) ∧ (

∧
j∈Jk

φj)

which is clearly a conjunction of working formulas.

2. Or, we replace a strict sub-working formula of ϕk by a conjunction of working formulas.
Thus, let φ be a sub-working formula of ϕk of depth dφ < dk (thus φ is different from ϕk).
Thus, ϕk has a sub-working formula10 of the form

¬(∃x̄α ∧ (
∧
l∈L

ψl) ∧ (φ)),

where L is a finite (possibly empty) set and all the ψl are working formulas. Let
∧

j∈J φj

be a conjunction of working formulas which is equivalent to φ in T . Thus the preceding
sub-working formula of ϕk is equivalent in T to

¬(∃x̄α ∧ (
∧
l∈L

ψl) ∧ (
∧
j∈J

φj)),

which is clearly a sub-working formula and thus ϕk is equivalent to a working formula and
thus

∧
i∈I ϕi is equivalent to a conjunction of working formulas.

10By considering that the set of the sub-formulas of any formula ϕ contains also the whole formula ϕ.
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From 1 and 2 we deduce that (i) every substitution of a sub-working formula of a conjunction
of working formulas by a conjunction of working formulas produces a conjunction of working
formulas.

Since each rule transforms a working formula into a conjunction of working formulas, then
according to (i) every finite application of the rewriting rules on a working formula produces a
conjunction of working formulas. Let us show now that each of these final working formulas is
solved.

Let ϕ be a working formula. Let φ be the conjunction of working formulas obtained after
finite application of the rules on ϕ. Suppose that the rules can not be applied anymore and one
of the working formula of φ is not solved. Let ψ be this formula, two cases arise:

Case 1: ψ is a working formula of depth greater than 2. Thus, ψ has a sub-formula of the
form

¬

 ∃x̄ α ∧ ψ1∧

¬
[
∃ȳ β ∧

∧
i∈I ¬(∃z̄i δi)

] 
where ψ1 is a conjunction of working formulas, I is a nonempty set and α, β and δi are elements
of A for all i ∈ I. Let (∃ȳ′β′ ∧ (∃x̄′′β′′ ∧ (∃ȳ′′′β′′′))) be the decomposed formula in T of ∃ȳβ and
let (∃z̄′iδ′i ∧ (∃z̄′′i δ′′i ∧ (∃z̄′′′i δ′′′i ))) be the decomposed formula in T of ∃z̄iδi. If ∃ȳ′′′β′′′ is not the
formula ∃εtrue then the rule (3) can still be applied which contradicts our supposition. Thus,
suppose that

∃ȳ′′′β′′′ = ∃εtrue (2.27)

If there exists k ∈ I such that ∃z̄′′′k δ′′′k is not the formula ∃εtrue then the rule (3) can be still
applied (with I = ∅) which contradicts our supposition. Thus, suppose that

∃z̄′′′i δ′′′i = ∃εtrue (2.28)

for all i ∈ I. If there exists k ∈ I such that ∃z̄kδk is not an element of A′ then since we have
(2.28), the rule (4) can still be applied (with I = ∅) which contradicts our supposition. Thus,
suppose that

∃z̄iδi ∈ A′ (2.29)

for all i ∈ I. If ∃ȳβ is not an element of A′ then since we have (2.27) and (2.29), the rule (4)
can still be applied which contradicts our supposition. Thus, suppose that

∃ȳβ ∈ A′ (2.30)

Since we have (2.29) and (2.30) then the rule (5) can still be applied which contradicts all our
suppositions.

Case 2: ψ is a working formula of the form

¬(∃x̄ α ∧
∧
i∈I

¬(∃ȳi βi))

where at least one of the following conditions holds:

1. α is the formula false,

2. there exists k ∈ I such that βk is the formula true or false,

3. there exists k ∈ I such that ∃ȳkβk 6∈ A′,
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4. ∃x̄α 6∈ A′.

If the condition (1) holds then the rule (2) can still be applied which contradicts our suppositions.
If the condition (2) holds then the rules (1) and (2) can still be applied which contradicts our
suppositions. If the condition (3) holds then the rule (3) or (4) (with I = ∅) can still be applied
which contradicts our suppositions. If the condition (4) holds then according to the preceding
point ∃ȳiβi ∈ A′ for all i ∈ I and thus the rule (3) or (4) can still be applied which contradicts
our suppositions.

From Case 1 and Case 2, our suppositions are always false thus ψ is a solved formula and
thus φ is a conjunction of solved formulas.

2.3.4 The decision procedure

Having any formula ψ, the resolution of ψ proceeds as follows:

1. Transform the formula ψ into a normalized formula and then into a working formula ϕ
which is wnfv and equivalent to ψ in T .

2. Apply the preceding rewriting rules on ϕ as many time as possible. At the end we obtain
a conjunction φ of solved formulas.

According to Property 2.3.3.1, the application of the rewriting rules on a formula ψ without free
variables produces a conjunction φ of solved formulas which is equivalent to ψ in T and does not
contain free variables. According to Property 2.3.2.5, φ is either the formula true or ¬true, thus
either T |= ψ or T |= ¬ψ and thus T is a complete theory.

Corollary 2.3.4.1 If T is infinite-decomposable then every formula is equivalent in T either to
true or to false or to a Boolean combination of elements of A′ which has at least one free variable.

2.4 Application to the theory T of finite or infinite trees

2.4.1 The axioms of T

The theory T of finite or infinite trees built on an infinite set F of distinct function symbols
has as axioms the infinite set of propositions of one of the three following forms:

∀x̄∀ȳ ¬fx̄ = gȳ [1]
∀x̄∀ȳ f x̄ = fȳ →

∧
i xi = yi [2]

∀x̄∃!z̄
∧

i zi = ti[x̄z̄] [3]

where f and g are distinct function symbols taken from F , x̄ is a vector of possibly non-distinct
variables xi, ȳ is a vector of possibly non-distinct variables yi, z̄ is a vector of distinct variables
zi and ti[x̄z̄] is a term which begins with an element of F followed by variables taken from x̄ or
z̄. Note that this theory does not admit full elimination of quantifiers. In fact, in the formula
∃x y = f(x) we can not remove or eliminate the quantifier ∃x.

2.4.2 Properties of T

Suppose that the variables of V are ordered by a strict linear dense order relation without
endpoints denoted by �.
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Definition 2.4.2.1 A conjunction α of flat equations is called (�)-solved if all its left-hand sides
are distinct and α does not contain equations of the form x = x or y = x, where x and y are
variables such that x � y.

Property 2.4.2.2 Every conjunction α of flat formulas is equivalent in T either to false or to
a (�)-solved conjunction of flat equations.

Proof. To prove this property we introduce the following rewriting rules:

(1) false ∧ α =⇒ false,
(2) x = fy1...ym ∧ x = gz1...zn =⇒ false,
(3) x = fy1...yn ∧ x = fz1...zn =⇒ x = fy1...yn ∧

∧
i∈{1,...,n} yi = zi,

(4) x = x =⇒ true
(5) y = x =⇒ x = y

(6) x = y ∧ x = fz1...zn =⇒ x = y ∧ y = fz1...zn

(7) x = y ∧ x = z =⇒ x = y ∧ y = z

with α any formula and f and g two distinct function symbols taken from F . The rules (5), (6)
and (7) are applied only if x � y. This condition prevents infinite loops.

Let us prove now that every repeated application of the preceding rewriting rules on any
conjunction α of flat formulas, terminates and producing either the formula false or a (�)-solved
conjunction of flat equations which is equivalent to α in T .
Proof, first part: The application of the rewriting rules terminates. Since the variables which
occur in our formulas are ordered by the strict linear order relation without endpoints “ � ”, we
can number them by positive integers such that

x � y ↔ no(x) > no(y),

where no(x) is the number associated to the variable x. Let us consider the 4-tuples (n1, n2, n3, n4)
where the ni’s are the following positive integers:

• n1 is the number of occurrences of sub-formulas of the form x = fy1...yn, with f ∈ F ,

• n2 is the number of occurrences of atomic formulas,

• n3 is the sum of the no(x)’s for all occurrence of a variable x,

• n4 is the number of occurrences of formulas of the form y = x, with x � y.

For each rule, there exists a row i such that the application of this rule decreases or does not
change the value of the nj ’s, with 1 ≤ j < i, and decreases the value of ni. The row i is equal to:
2 for the rule (1), 1 for the rules (2) and (3), 3 for the rules (4), (6) and (7), 4 for the rule (5). To
each sequence of formulas obtained by a finite application of the preceding rewriting rules, we
can associate a series of 4-tuples (n1, n2, n3, n4) which is strictly decreasing in the lexicographic
order. Since the ni’s are positive integers, they cannot be negative, thus, this series of 4-tuples
is a finite series and the application of the rewriting rules terminates.

Proof, second part: The rules preserve equivalence in T . The rule (1) is evident in T . The
rules (2) preserves the equivalence in T according to the axiom 1. The rule (3) preserves the
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equivalence in T according to the axiom 2. The rules (4), (5), (6) and (7) are evident in T .

Proof, third part: The application of the rewriting rules terminates either by false or by a (�)-
solved conjunction of flat equations. Suppose that the application of the rewriting rules on
a conjunction α of flat formulas terminates by a formula β and at least one of the following
conditions holds:

1. β is not the formula false and has at least a sub-formula of the form false,

2. β has two equations with the same left-hand side,

3. β contains equations of the form x = x or y = x with x � y.

If the condition 1 holds then the rule (1) can still be applied which contradicts our supposition.
If the condition 2 holds then the rules (2), (3), (6) and (7) can still be applied which contradicts
our supposition. If the condition 3 holds then the rules (4) and (5) can still be applied which
contradicts our supposition. Thus, the formula β according to Definition 2.4.2.1 is either the
formula false or a (�)-solved conjunction of flat equations. 2

Let us introduce now the notion of reachable variable and reachable equation.

Definition 2.4.2.3 The equations and reachable variables from the variable u in the formula

∃x̄
n∧

i=1

vi = ti

are those which occur in at least one of its sub-formulas of the form
∧m

j=1 vkj
= tkj

, where vk1 is
the variable u and vkj+1 occurs in the term tkj

for all j ∈ {1, ..,m}. The equations and reachable
variables of this formula are those who are reachable from a variables which does not occur in x̄.

Example 2.4.2.4 In the formula

∃uvw z = fuv ∧ v = gvu ∧ w = fuv,

the equations z = fuv and v = gvu and the variables u and v are reachable. On the other hand
the equation w = fuv and the variable w are not reachable.

According to the axioms [1] and [2] of T we have the following property

Property 2.4.2.5 Let α be a conjunction of flat equations. If all the variables of x̄ are reachable
in ∃x̄ α then T |= ∃?x̄ α.

According to the axiom 3 we have:

Property 2.4.2.6 Let α be a (�)-solved conjunction of flat equations and let x̄ be the vector of
its left-hand sides. We have T |= ∃!x̄ α.

2.4.3 T is infinite-decomposable

Property 2.4.3.1 T is a decomposable theory.

Let us show that T satisfies the conditions of Definition 2.2.1.1.
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Choice of the sets Ψ(u), A, A′, A′′ and A′′′

Let F0 be the set of the 0-ary function symbols of F . The sets Ψ(u), A, A′, A′′ and A′′′ are
chosen as follows:

• Ψ(u) is the set {faux} if F − F0 = ∅, else it contains formulas of the form ∃ȳ u = fȳ with
f ∈ F − F0,

• A is the set FL,

• A′ is the set of the formulas of the form ∃x̄′α′ such that

– α′ is either the formula false or a (�)-solved conjunction of flat equations where the
order � is such that all the variables of x̄′ are greater than the free variables of ∃x̄′α′,

– all the variables of x̄′ and all the equations of α′ are reachable in ∃x̄′α′,

• A′′ is the set of the formulas of the form ∃x̄′′ true,

• A′′′ is the set of the formulas of the form ∃x̄′′′α′′′ such that α′′′ is a (�)-solved conjunction
of flat equations and x̄′′′ is the vector of the left-hand sides of the equations of α′′′.

It is clear that FL is T -closed and A′, A′′ and A′′′ contain formulas of the form ∃x̄ α with
α ∈ FL. Let us show now that T satisfies the five condition of Definition 2.2.1.1

T satisfies the first condition

Let us show that every formula of the form ∃x̄ α ∧ ψ, with α ∈ FL and ψ any formula, is
equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)), (2.31)

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′ and ∃x̄′′′ α′′′ ∈ A′′′.
Let us choose the order � such that all the variables of x̄ are greater than the free variables

of ∃x̄α. According to Property 2.4.2.2 two cases arise:
Either α is equivalent to false in T . Thus, x̄′ = x̄′′ = x̄′′′ = ε, α′ = false and α′′ = α′′′ = true.
Or, α is equivalent to a (�)-solved conjunction β of flat equations. Let X be the set of the

variables of the vector x̄. Let Yrea be the set of the reachable variables of ∃x̄β. Let Lhs be the
set of the variables which occur in a left-hand side of an equation of β. We have:
− x̄′ contains the variables of X ∩ Yrea.
− x̄′′ contains the variables of (X − Yrea)− Lhs.
− x̄′′′ contains the variables of (X − Yrea) ∩ Lhs.
− α′ is the conjunction of the reachable equations of ∃x̄β.
− α′′ is the formula true.
− α′′′ is the conjunction of the unreachable equations of ∃x̄β.

According to our construction it is clear that ∃x̄′α′ ∈ A′, ∃x̄′′α′′ ∈ A′′ and ∃x̄′′′α ∈ A′′′. Let
us show that (2.31) and ∃x̄α ∧ ψ are equivalent in T . Let X ′, X ′′ and X ′′′ be the sets of the
variables of the vectors x̄′, x̄′′ and x̄′′′. If α is equivalent to false in T then the equivalence of
the decomposition is evident. Else β is a conjunction of flat equations and thus according to our
construction we have: X = X ′ ∪X ′′ ∪X ′′′, X ′ ∩X ′′ = ∅, X ′ ∩X ′′′ = ∅, X ′′ ∩X ′′′ = ∅, for all
x′′i ∈ X ′′ we have x′′i 6∈ var(α′) and for all x′′′i ∈ X ′′′ we have x′′′i 6∈ var(α′ ∧ α′′). Moreover each
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equation of β occurs in α′ ∧ α′′ ∧ α′′′ and each equation in α′ ∧ α′′ ∧ α′′′ occurs in β and thus
T |= β ↔ (α′ ∧α′′ ∧α′′′). We have shown that the vectorial quantifications are coherent and the
equivalence T |= β ↔ α′ ∧ α′′ ∧ α′′′ holds. According to Property 2.4.2.2, we have T |= α ↔ β
and thus, the decomposition keeps the equivalence in T .

Example 2.4.3.2 Let us decompose the following formula ϕ

∃xyv z = fxy ∧ z = fxw ∧ v = fz.

First, since w and z are free in ϕ then the order � will be chosen as follows:

x � y � v � w � z.

Note that the quantified variables are greater than the free variables. Then, using the rewriting
rules of Property 2.4.2.2 we transform the conjunction of equations into a (�)-solved formula.
Thus, the formula ϕ is equivalent in T to the following formula ψ

∃xyv z = fxy ∧ y = w ∧ v = fz.

Since the variables x, y, w and the equations z = fxy, y = w are reachable in ψ, then ψ is
equivalent in T to the following decomposed formula

∃xy z = fxy ∧ y = w ∧ (∃ε true ∧ (∃v v = fz)).

It is clear that (∃xy z = fxy ∧ y = w) ∈ A′, (∃ε true) ∈ A′′ and (∃v v = fz) ∈ A′′′.

T satisfies the second condition

Let us show that if ∃x̄′α′ ∈ A′ then T |= ∃?x̄′α′. Since ∃x̄′α′ ∈ A′ and according to the choice
of the set A′, either α′ is the formula false and thus we have immediately T |= ∃?x̄′α′ or α′ is
a (�)-solved conjunction of flat equations and the variables of x̄′ are reachable in ∃x̄′α′. Thus,
using Property 2.4.2.5 we get T |= ∃?x̄′α′.

Let us show now that if y is a free variable of ∃x̄′α′ then T |= ∃?yx̄′ α′ or there exists
ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄′ α′) → ψ(y). Let y be a free variable of ∃x̄′α′. It is clear that
α′ can not be in this case the formula false. Thus, four cases arise:

If y occurs in a sub-formula of α′ of the form y = t(x̄′, z̄′, y), where z̄′ is the set of the free
variables of ∃x̄′α′ which are different from y and where t(x̄′, z̄′, y) is a term which begins by an
element of F −F0 followed by variables taken from x̄′ or z̄′ or {y}, then the formula ∃x̄′α′ implies
in T the formula ∃x̄′ y = t(x̄′, z̄′, y), which implies in T the formula ∃x̄′z̄′w y = t(x̄′, z̄′, w), where
y = t(x̄′, z̄′, w) is the formula y = t(x̄′, z̄′, y) in which we have replaced every free occurrence of
y in the term t(x̄′, z̄′, y) by the variable w. According to the choice of the set Ψ(u), the formula
∃x̄′z̄′w u = t(x̄′, z̄′, w) belongs to Ψ(u).

If y occurs in a sub-formula of α′ of the form y = f0 with f0 ∈ F0 then T |= ∃!y y = f0

according to the third axiom of T . Thus (i) T |= ∃?y α′. On the other hand, since α′ is (�)-
solved, y has no occurrences in an other left-hand side of an equation of α′, thus, since the
variables of x̄ are reachable in ∃x̄′α′ (according to the choice of the set A′), all the variables of
x̄′ keep reachable in ∃x̄′y α′ and thus using (i) and Property 2.4.2.5 we get T |= ∃?x̄′y α′.

If y occurs in a sub-formula of α′ of the form y = z then:

1. According to the choice of the set A′, the order � is such that all the variables of x̄′ are
greater than the free variables of ∃x̄′α′.
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2. According to Definition 2.4.2.2 of the (�)-solved formula, we have y � z.

From (1) and (2), we deduce that z is a free variable in ∃x̄′α′. Since α′ is (�)-solved, y has no
occurrences in an other left-hand side of an equation of α′, thus, since the variables of x̄ are
reachable in ∃x̄′α′ (according to the choice of the set A′), all the variables of x̄′ keep reachable
in ∃x̄′y α′. Moreover, for each value of z there exists at most a value for y. Thus, using Property
2.4.2.5 we get T |= ∃?x̄′y α′.

If y occurs only in the right-hand sides of the equations of α′, then according to the choice of
the set A′, all the variables of x̄′ and all the equations of α′ are reachable in ∃x̄′α′. Thus, since
y does not occur in a left-hand side of an equation of α′, the variable y and the variables of x̄′

are reachable in ∃x̄′y α′ and thus using Property 2.4.2.5 we get T |= ∃?x̄′y α′. In all the cases T
satisfies the second condition of Definition 2.2.1.1.

T satisfies the third condition

First, we present a property which holds in any model M of T . This property results from the
axiomatization of T (more exactly from the axioms 1 and 2) and the infinite set of function
symbols F .

Property 2.4.3.3 Let M be a model of T and let f be a function symbol taken from F − F0.
The set of the individuals i of M , such that M |= ∃x i = fx, is infinite.

Let ∃x̄′′α′′ be a formula which belongs to A′′. According to the choice of A′′, this formula is
of the form ∃x̄′′ true. Let us show that, for every variable x′′j of x̄′′ we have T |= ∃Ψ(u)

∞ xj true.
Two cases arise:

Either F − F0 = ∅ then Ψ(u) = {faux} and F0 is infinite since the theory is defined on an
infinite set of function symbols. According to Axiom of conflict of symbols, for every distinct
constants f and g correspond two distinct individuals in every model of T . Thus, since F0 is
infinite there exists an infinite set of individuals in every model of T and thus according to
Definition 2.1.2.1, we have: T |= ∃{false}∞ xj true.

Or, F − F0 6= ∅, thus Ψ(u) contains formulas of the form ∃z̄ u = fz̄ with f ∈ F − F0.
Let M be a model of T . Since the formula ∃x′′j true does not have free variables, it is already
instantiated, and thus according to Definition 2.1.2.1 it is enough to show that there exists an
infinity of individuals i of M which satisfy the following condition:

M |= ¬ψ1(i) ∧ · · · ∧ ¬ψn(i), (2.32)

with ψj(u) ∈ Ψ(u), i.e. of the form ∃z̄ u = fz̄ with f ∈ F − F0. Two cases arise:

• Either F−F0 is a finite set, then F0 is infinite because the theory is defined on an infinite set
of function symbols. Thus, there exists an infinity of constants fk which are different from
all the function symbols of all the ψj(u) and thus using the axiom of conflict of symbols
there exists an infinity of distinct individuals i such that (2.32).

• Or, F − F0 is infinite, then there exists a formula ψ(u)∗ ∈ Ψ(u) which is different from all
the ψj(u) of (2.32), i.e. which has a function symbol which is different from the function
symbols of all the ψ1(u) · · ·ψn(u). According to Property 2.4.3.3 there exists an infinity of
individuals i such that M |= ψ(i)∗. Since this ψ(u)∗ is different from all the ψj(u), then
according to axiom of conflict of symbols there exists an infinite set of individuals i such
that M |= ψ(i)∗ ∧ ¬ψ1(i) ∧ · · · ∧ ¬ψn(i) and thus such that (2.32).
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T satisfies the fourth condition

Let us show that if ∃x̄′′′α′′′ ∈ A′′′ then T |= ∃!x̄′′′ α′′′. Let ∃x̄′′′α′′′ be an element of A′′′. According
to the choice of the set A′′′ and Property 2.4.2.6 we get immediately T |= ∃!x̄′′′α′′′.

T satisfies the fifth condition

Let us show that if the formula ∃x̄′α′ belongs to A′ and has no free variables then this formula
is either the formula ∃εtrue or ∃εfalse. Let ∃x̄′α′ be a formula, without free variables, which
belongs to A′. We have

1. According to the choice of the set A′, all the variables and equations of ∃x̄′α′ are reachable
in ∃x̄′α′ and α′ is either the formula false or a (�)-solved conjunction of flat equations.

2. Since the formula ∃x̄′α′ has no free variables and according to Definition 2.4.2.3 there exists
in this case neither variables nor equations reachable in ∃x̄′α′,

Thus, from (1) and (2), x̄′ is the empty vector, i.e. ε and α′ is either the formula true or false.
We have shown that T satisfies the five conditions of Definition 2.2.1.1. Moreover, T. Dao

has shown in [16] that this theory has as model the algebra of finite or infinite trees introduced
by Maher in [33], then T is infinite-decomposable and thus complete. 2

2.4.4 Solving first-order propositions in T

Example 2.4.4.1 Let us solve the following formula ϕ1 in T :

∃x∀y ((∃zwv y = fz ∧ y = fx ∧ w = gzv) ∨ (x = fy ∧ x = fx))

Using Property 2.3.1.3 we first transform the preceding formula into the following normalized
formula

¬(∃ε true ∧ ¬(∃x true ∧ ¬

 ∃y true∧
¬(∃zwv y = fz ∧ y = fx ∧ w = gzv)∧
¬(∃ε x = fy ∧ x = fx)

)) (2.33)

Since A = FL then the preceding normalized formula is a working formula. Let us decompose
the sub-formula

∃zwv y = fz ∧ y = fx ∧ w = gzv. (2.34)

According to Section 2.4.3, the order � is chosen such that z � w � v � y � x. Using the
rewriting rules of Property 2.4.2.2, the sub-formula y = fz ∧ y = fx ∧ w = gzv is equivalent in
T to the (�)-solved formula y = fz ∧ z = x ∧ w = gzv, and thus according to Section 2.4.3, the
decomposed formula of (2.34) is

∃z y = fz ∧ z = x ∧ (∃v true ∧ (∃ww = gzv))

Since (∃ww = gzv) 6= (∃ε true) we can apply the rule (3) with I = ∅, thus, the formula (2.33) is
equivalent in T to

¬(∃ε true ∧ ¬(∃x true ∧ ¬

 ∃y true∧
¬(∃zv y = fz ∧ z = x)∧
¬(∃ε x = fy ∧ x = fx)

)) (2.35)
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The sub-formula ∃zv y = fz ∧ z = x is not an element of A′ and is equivalent in T to the
decomposed formula ∃z y = fz∧ z = x∧ (∃v true ∧ (∃ε true)), thus we can apply the rule (4) with
I = ∅ and the formula (2.35) is equivalent in T to

¬(∃ε true ∧ ¬(∃x true ∧ ¬

 ∃y true∧
¬(∃z y = fz ∧ z = x)∧
¬(∃ε x = fy ∧ x = fx)

)) (2.36)

Let us decompose now the sub-formula

∃ε x = fy ∧ x = fx (2.37)

Using the rewriting rules of Property 2.4.2.2, the sub-formula x = fy ∧ x = fx is equivalent in
T to the (�)-solved formula x = fy ∧ y = x and thus according to Section 2.4.3 the decomposed
formula of (2.37) is

∃ε x = fy ∧ y = x ∧ (∃ε true ∧ (∃ε true))

Since (∃ε x = fy ∧x = fx) 6∈ A′, then we can apply the rule (4) with I = ∅ and thus the formula
(2.36) is equivalent in T to

¬(∃ε true ∧ ¬(∃x true ∧ ¬

 ∃ytrue∧
¬(∃z y = fz ∧ z = x)∧
¬(∃ε x = fy ∧ y = x)

)) (2.38)

According to Section 2.4.3, the formula ∃ε vrai∧ (∃y true ∧ (∃ε true)) is the decomposed formula
of ∃y true. Since ∃y true 6∈ A′, (∃z y = fz ∧ z = x) ∈ A′ and (∃ε x = fy ∧ y = x) ∈ A′ then we
can apply the rule (4) and thus the formula (2.38) is equivalent in T to

¬(∃ε true ∧ ¬(∃ε true ∧ ¬(∃ε true)) (2.39)

Finally, we can apply the rule (1) thus the formula (2.39) is equivalent in T to ¬(∃ε true). Thus
ϕ1 is false in T .

Example 2.4.4.2 Let us solve the following formula ϕ2 in T :

∃x∀y ((∃z y = fz ∧ z = x) ∨ (∃ε x = fy ∧ y = x) ∨ ¬(x = fy)) (2.40)

Using Property 2.3.1.3 we first transform the preceding formula into the following normalized
formula

¬(∃ε true ∧ ¬(∃x true ∧ ¬

 ∃y x = fy∧
¬(∃z y = fz ∧ z = x)∧
¬(∃ε x = fy ∧ y = x)

)) (2.41)

Since A = FL then the preceding normalized formula is a working formula in T . Since (∃y x =
fy) ∈ A′, (∃z y = fz ∧ z = x) ∈ A′ and (∃ε x = fy ∧ y = x) ∈ A′ then we can apply the rule (5),
thus the formula (2.41) is equivalent in T to

¬


∃ε true∧
¬(∃x true ∧ ¬(∃y x = fy))∧
¬(∃x1y1z x1 = fy1 ∧ y1 = fz ∧ z = x1)∧
¬(∃x2y2 x2 = fy2 ∧ x2 = fy2 ∧ y2 = x2)

 (2.42)
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According to Section 2.4.3, the formula ∃ε true ∧ (∃x true ∧ (∃ε true)) is the decomposed formula
of ∃x true. Since (∃x true) 6∈ A′ and (∃y x = fy) ∈ A′ then we can apply the rule (4) and thus
the formula (2.42) is equivalent in T to

¬


∃ε true∧
¬(∃ε true)∧
¬(∃x1y1z x1 = fy1 ∧ y1 = fz ∧ z = x1)∧
¬(∃x2y2 x2 = fy2 ∧ x2 = fy2 ∧ y2 = x2)

 (2.43)

Finally, we can apply the rule (1), thus the formula (2.43) is equivalent in T to true. Thus ϕ2

is true in T .

2.5 Discussion and partial conclusion

Our decision procedure which is ideal for deciding the validity of complex propositions can also
be applied to first order formulas having free variables and produces in this case a conjunction
φ of solved formulas easily transformable into a boolean combination of basic formulas. But in
no cases, our algorithm can warrant that φ is neither true nor false if it contains at least one
free variables. It can not also present the solutions of the free variables in a clear and explicit
way and can not detect if a formula having at least one free variable is always true or false. This
is why this algorithm is called decision procedure and not general algorithm solving first order
constraints.

In the other hand, we have shown the infinite-decomposability of fundamental theories such
as: the equational theory, the theory of additive rational or real numbers, the theory of finite
trees, the theory of infinite trees, the theory of finite or infinite trees and a combination of finite
or infinite trees with additive rational or real numbers [26]. What about the decomposability
of the theory of linear dense order ? If we take as model the rational numbers then for every
instantiation of the free variables of the formula ∃x z < x ∧ x < y: either there exists an infinity
values for x, or there exists no values for x ! In fact, if the variables z and y are instantiated
respectively by 1 and 0, then there exists no instantiations for x such that 1 < x ∧ x < 0 ! This
new behavior does not satisfy the infinite quantifier and thus the theory of linear dense order
is not infinite-decomposable. We must find a new quantifier more expressive than the infinite
quantifier ! This will be our goal in Chapter 3.
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Zero-infinite-decomposable theory
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We present in this chapter the class of the zero-infnite-decomposable theories which is an
extension of the infinite-decomposable theories, and where the infinite quantifier has been re-
placed by a new quantifier called zero-infinite. We show the completeness of these theories using
the sufficient condition of completeness of first order theories given in Chapter 1, and give some
examples of fundamental zero-infinite-decomposable theories. We present also a property that
links the infinite-decomposable theories to the zero-infinite-decomposable theories and show that
the infinite theories Eq, Ra and T are also zero-infinite-decomposable. Then, we give a decision
procedure in every zero-infinite-decomposable theory T , in the form of six rewriting rules which
transform a formula ϕ, which can possibly contain free variables, into a wnfv conjunction φ of
solved formulas, equivalent to ϕ in T and such that φ is, either the formula true, or the formula∧

i∈I ¬true, or a formula having at least one free variable and being easily transformable into a
boolean combination of quantified conjunctions of atomic formulas. In particular, if ϕ has no
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free variables, then φ is, either the formula true, or the formula ¬true. The correctness of our
algorithm is another proof of the completeness of the zero-infinite-decomposable theories. We
end this chapter by an application to the construction of trees on an ordered set. This theory
denoted by Tord, is a complete axiomatization of a tree construction on any set of individuals
together with a linear dense order relation without endpoints. After having presented the axioms
of Tord, we show its zero-infinite-decomposability and end by an example on solving propositions
in Tord. Note that the results presented in this chapter have been published in [23], [24] and [25].

3.1 Zero-infinite quantifier: ∃Ψ(u)
o∞

Let M be a model and T a theory. Let Ψ(u) be a set of formulas having at most one free variable
u. Let ϕ and ϕj be M -formulas.

Definition 3.1.0.3 We write
M |= ∃Ψ(u)

o∞ xϕ(x), (3.1)

if for each instantiation ∃xϕ′(x) of ∃xϕ(x) by individuals of M one of the following properties
holds:

• the set of the individuals i of M such that M |= ϕ′(i), is infinite,

• for all finite sub-set {ψ1(u), .., ψn(u)} of elements of Ψ(u), the set of the individuals i of
M such that M |= ϕ′(i) ∧

∧
j∈{1,...,n} ¬ψj(i) is infinite.

We write T |= ∃Ψ(u)
o∞ xϕ(x), if for every model M of T we have M |= ∃Ψ(u)

o∞ xϕ(x).

This quantifier is more general than the infinite quantifier and does not restrict the model to be
infinite. In the case where Ψ(u) = {false}, the form (3.1) means that if M |= ∃xϕ(x) then M
contains an infinity of individuals i such that M |= ϕ(i).

Property 3.1.0.4 Let J be a finite possibly empty set. If T |= ∃Ψ(u)
o∞ xϕ(x) and if for each ϕj,

one at least of the following properties holds:

• T |= ∃?xϕj,

• there exists ψj(u) ∈ Ψ(u) such that T |= ∀xϕj → ψj(x),

then
T |= (∃xϕ(x) ∧

∧
j∈J ¬ϕj) ↔ (∃xϕ(x)).

Proof. Let ∃xϕ′(x) be an instantiation of ∃xϕ(x) by individuals of M . Let us show that if
the conditions of this property hold, then

M |= (∃xϕ′(x) ∧
∧

j∈J ¬ϕj(x)) ↔ (∃xϕ′(x)). (3.2)

Let J ′ be the set of the j ∈ J such that M |= ∃?xϕj(x) and let m be its cardinality. Since for all
j ∈ J ′, M |= ∃?xϕ′j(x), then it is enough that M contains at least m+ 1 individuals, to warrant
the existence of an individual i ∈M such that

M |=
∧

j∈J ′

¬ϕ′j(i). (3.3)
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On the other hand, since T |= ∃Ψ(u)
o∞ xϕ(x) and according to Definition 3.1.0.3 of the zero-infinite

quantifier, two cases arise:
(1) Either, M |= ¬(∃xϕ′(x)), thus M |= ¬(∃x̄ ϕ′(x)∧

∧
j∈J ¬ϕj(x)) and thus the equivalence

(3.2) holds in M .
(2) Or, for every finite sub-set {ψ1(u), ..., ψn(u)} of Ψ(u), the set of the individuals i of

M such that M |= ϕ′(i) ∧
∧n

j=1 ¬ψj(i) is infinite. Thus, since for all j ∈ J − J ′ we have
M |= ∀xϕj(x) → ψj(x), then there exists an infinite set ξ of individuals i of M such that
M |= ϕ′(i) ∧

∧
j∈J−J ′ ¬ϕj(i). Since ξ is infinite, then it contains at least m + 1 individuals

and thus according to (3.3), there exists at least an individual i ∈ ξ such that M |= ϕ′(i) ∧
(
∧

j∈J−J ′ ¬ϕ′j(i)) ∧ (
∧

k∈J ′ ¬ϕ′k(i)) and thus such that

M |= ∃xϕ′(x) ∧
∧
j∈J

¬ϕ′j(x).

Since M |= ∃xϕ′(x) ∧
∧

j∈J ¬ϕj(x), then M |= ∃xϕ′(x) and thus the equivalence (3.2) holds in
M . 2

Property 3.1.0.5 If T |= ∃Ψ(u)
∞ xϕ(x) then T |= ∃Ψ(u)

o∞ xϕ(x).

Let us recall in this section some properties of the vectorial quantifiers. These properties are
proved in Chapter 2. We will handle them all long this chapter.

Property 3.1.0.6 If T |= ∃?ȳφ and if all the variables of ȳ has no free occurrences in ϕ then

T |= (∃x̄ ϕ ∧ ¬(∃ȳ φ ∧ ψ)) ↔

(∃x̄ ϕ ∧ ¬(∃ȳ φ))
∨

(∃xy ϕ ∧ φ ∧ ¬ψ)

 .
Corollary 3.1.0.7 If T |= ∃?x̄ ϕ then

T |= (∃x̄ ϕ ∧
∧
i∈I

¬φi) ↔ ((∃x̄ϕ) ∧
∧
i∈I

¬(∃x̄ ϕ ∧ φi)).

Corollary 3.1.0.8 If T |= ψ → (∃!x̄ ϕ) then

T |= (ψ ∧ (∃x̄ ϕ ∧
∧
i∈I

¬φi)) ↔ (ψ ∧
∧
i∈I

¬(∃x̄ ϕ ∧ φi)).

3.2 Zero-infinite-decomposable theory

3.2.1 Definition

Definition 3.2.1.1 A theory T having at least one model is called zero-infinite-decomposable,
if there exists a set Ψ(u) of formulas, having at most one free variable u, a set A of formulas
closed for the conjunction, a set A′ of formulas of the form ∃x̄α with α ∈ A, and a sub-set A′′

of A such that

1. every formula of the form ∃x̄ α ∧ ψ, with α ∈ A and ψ any formula is equivalent in T to a
wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)),

with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A and T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′,
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2. if ∃x̄′α′ ∈ A′, then T |= ∃?x̄′ α′ and for every free variable y in ∃x̄′α′, at least one of the
following properties holds

• T |= ∃?yx̄′ α′,
• there exists ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄′ α′) → ψ(y),

3. if α′′ ∈ A′′ then

• the formula ¬α′′ is equivalent in T to a wnfv formula of the form
∨

i∈I αi with αi ∈ A,
• for all x′′, the formula ∃x′′α′′ is equivalent in T to a wnfv formula which belongs to
A′′,

• for every variable x′′, T |= ∃Ψ(u)
o∞ x′′ α′′,

4. every conjunction of flat formulas is equivalent in T to a wnfv disjunction of elements of
A,

5. if the formula ∃x̄′α′ ∧ α′′ with ∃x̄′α′ ∈ A′ and α′′ ∈ A′′ has no free variables, then x̄ = ε,
and α′ and α′′ belong to {true, false}.

Note that the decomposition expressed in this definition is similar to the one defined in the
infinite decomposable theories by replacing the infinite quantifier by the zero-infinite quantifier.
The main difference between the two classes of theories resides in the set A′′ whose properties
have been increased.

3.2.2 Properties

Property 3.2.2.1 If T is zero-infinite-decomposable then every formula of the form ∃x̄α, with
α ∈ A, is equivalent in T , to a wnfv formula of the form ∃x̄′α′∧α′′, with ∃x̄′α′ ∈ A′ and α′′ ∈ A′′.

Proof. According to the first point of Definition 3.2.1.1, the formula ∃x̄α is equivalent in T to
a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)), (3.4)

with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A and T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′. Since T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′
and according to Corollary 3.1.0.8 (with φ is the formula false), the formula (3.4) is equivalent
in T to

∃x̄′ α′ ∧ (∃x̄′′ α′′),
which, since α′′ ∈ A′′ and according to the second condition of the third point of Definition
3.2.1.1, is equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ α′′1,

with ∃x̄′ α′ ∈ A′ and α′′1 ∈ A′′. 2

Property 3.2.2.2 Let I a finite possibly empty set. If T is zero-infinite-decomposable then every
formula of the form

∃x̄α ∧
∧

i∈I ¬(∃ȳiβi), (3.5)

with α ∈ A and βi ∈ A for all i ∈ I, is equivalent in T to a wnfv formula of the form

∃x̄′α′ ∧ (∃x̄′′α′′ ∧
∧
j∈J

¬(∃ȳ′j β′j ∧ β′′j )),

with ∃x̄′α′ ∈ A′, α′′ ∈ A′′, J a finite possibly empty set with Card(I) = Card(J) and for all
j ∈ J we have ∃ȳ′jβ′j ∈ A′ and β′′j ∈ A′′.
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Proof. According to the third point of Definition 3.2.1.1 (with ψ =
∧

i∈I ¬(∃ȳiβi)), the formula
(3.5) is equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧
∧

j∈J ¬(∃ȳjβj))), (3.6)

with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A, βj ∈ A for all j ∈ J , T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′ and
Card(I) = Card(J). Since T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′ and according to Corollary 3.1.0.8, the
formula (3.6) is equivalent in T to the wnfv formula

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧
j∈J

¬(∃x̄′′′ (α′′′ ∧ ∃ȳjβj))).

By lifting the quantifications ∃ȳj after having possibly renamed some variables which occur in
the ȳj , the preceding formula is equivalent in T to

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧
j∈J

¬(∃x̄′′′ȳj α
′′′ ∧ βj)),

which, since A is closed for the conjunction, is equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧

k∈K

¬(∃ȳkβk)),

with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′, βk ∈ A for all k ∈ K and Card(K) = Card(J) = Card(I). According
to Property 3.2.2.1, the preceding formula is equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧
`∈L

¬(∃ȳ′`β′` ∧ β′′` )),

with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′, for all ` ∈ L we have ∃ȳ′`β′` ∈ A′ and β′′` ∈ A′′ with Card(L) =
Card(K) = Card(J) = Card(I). 2

Corollary 3.2.2.3 Let I be a finite possibly empty set. If T is zero-infinite-decomposable then
every formula of the form

∃x̄ α ∧
∧
i∈I

¬(∃ȳiβi), (3.7)

with α ∈ A and βi ∈ A for all i ∈ I, is equivalent in T to a wnfv disjunction of formulas of the
form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧
j∈J

¬(∃ȳ′j β′j)),

with ∃x̄′α′ ∈ A′, α′′ ∈ A′′, J a finite possibly empty set and for all j ∈ J we have ∃ȳ′j β′j ∈ A′.

Proof. If I is empty then the corollary holds according to Property 3.2.2.2. Else, suppose that
I = {1, 2, ..., n} and n 6= 0. According to Property 3.2.2.2, the formula (3.7) is equivalent in T
to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧
i∈I

¬(∃ȳ′i β′i ∧ β′′i )), (3.8)

with ∃x̄′α′ ∈ A′, α′′ ∈ A′′, I = {1, 2, ..., n}, and for all i ∈ I we have ∃ȳ′i β′i ∈ A′ and β′′i ∈ A′′.
Thus, the formula (3.8) is equivalent in T to

∃x̄′ α′ ∧ (∃x̄′′(α′′ ∧
∧

i∈I,i6=n

¬(∃ȳ′i β′i ∧ β′′i )) ∧ ¬(∃ȳ′n β′n ∧ β′′n)).
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Since ∃ȳ′nβ′n ∈ A′, then according to the second point of Definition 3.2.1.1 we have T |= ∃?ȳ′nβ′n.
Thus, according to Corollary 3.1.0.6 (with ϕ = α′′∧

∧
i∈I,i6=n ¬(∃ȳ′i β′i∧β′′i )), the preceding formula

is equivalent in T to

T |=

(∃x̄′ α′ ∧ (∃x̄′′(α′′ ∧
∧

i∈I,i6=n ¬(∃ȳ′i β′i ∧ β′′i )) ∧ ¬(∃ȳ′n β′n)))
∨

(∃x̄′α′ ∧ (∃x̄′′ȳn (α′′ ∧
∧

i∈I,i6=n ¬(∃ȳ′i β′i ∧ β′′i )) ∧ β′n ∧ ¬β′′n))

 ,
which according to the first condition of the third point of Definition 3.2.1.1 is equivalent in T
to

T |=

(∃x̄′ α′ ∧ (∃x̄′′(α′′ ∧
∧

i∈I,i6=n ¬(∃ȳ′i β′i ∧ β′′i )) ∧ ¬(∃ȳ′n β′n)))
∨

(∃x̄′α′ ∧ (∃x̄′′ȳn (α′′ ∧
∧

i∈I,i6=n ¬(∃ȳ′i β′i ∧ β′′i )) ∧ β′n ∧ (
∨

j∈Jn
βnj)))

 ,
with T |= (¬β′′n) ↔ (

∨
j∈Jn

βnj) and βnj ∈ A for all j ∈ Jn. After having distributed the ∧ on
the ∨ and the ∃ on the ∨, the preceding formula is equivalent in T to

T |=

(∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (
∧

i∈I,i6=n ¬(∃ȳ′i β′i ∧ β′′i )) ∧ ¬(∃ȳ′n β′n)))
∨
∨

j∈Jn

(∃x̄′α′ ∧ (∃x̄′′ȳn α
′′ ∧ β′n ∧ βnj ∧

∧
i∈I,i6=n ¬(∃ȳ′i β′i ∧ β′′i )))

 ,
which by lifting the quantification ∃x̄′′ȳn and by renaming possibly some variables which occur
in x̄′′ȳn is equivalent in T to

T |=

(∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (
∧

i∈I,i6=n ¬(∃ȳ′i β′i ∧ β′′i )) ∧ ¬(∃ȳ′n β′n)))
∨
∨

j∈Jn

(∃x̄′∃x̄′′ȳn α
′ ∧ α′′ ∧ β′n ∧ βnj ∧

∧
i∈I,i6=n ¬(∃ȳ′i β′i ∧ β′′i ))

 ,
which according to Property 3.2.2.2 (because A is closed for the conjunction and A′′ is a sub-set
of A), is equivalent in T to a wnfv formula of the form

T |=

(∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (
∧

i∈I,i6=n ¬(∃ȳ′i β′i ∧ β′′i )) ∧ ¬(∃ȳ′n β′n)))
∨
∨

j∈Jn

(∃x̄′j α′j ∧ α′′j ∧
∧

i∈I,i6=n ¬(∃z̄′ij δ′ij ∧ δ′′ij))

 , (3.9)

with ∃x̄′α′ ∈ A′, α′′ ∈ A′′, I = {1, 2, ..., n}, ∃ȳ′nβ′n ∈ A′, for all i ∈ I with i 6= n we have
∃ȳ′iβ′i ∈ A′ and β′′i ∈ A′′ and for all j ∈ Jn we have ∃x̄′jα′j ∈ A′, α′′j ∈ A′′, ∃z̄′ijδ′ij ∈ A′ and
δ′′ij ∈ A′′.

Thus, starting from the formula (3.8) which has car(I) = n sub-formulas of the form

¬(∃ȳ′iβ′i ∧ β′′i ), (3.10)

with ∃ȳ′iβ′i ∈ A′ and β′′i ∈ A′′, we get a wnfv disjunction of formulas each one containing
card(I)− 1 = n− 1 sub-formulas of the form (3.10). Thus, we have

(1) By repeating another time the preceding steps on the first formula of (3.9) of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (
∧

i∈I,i6=n

¬(∃ȳ′i β′i ∧ β′′i )) ∧ ¬(∃ȳ′n β′n)),

we get a wnfv formula equivalent in T of the form

T |=

(∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (
∧

i∈I,i6=n,i6=n−1 ¬(∃ȳ′i β′i ∧ β′′i )) ∧ ¬(∃ȳ′n−1 β
′
n−1) ∧ ¬(∃ȳ′n β′n)))

∨
∨

j∈Jn−1

(∃x̄′j α′j ∧ α′′j ∧
∧

i∈I,i6=n ¬(∃z̄′ij δ′ij ∧ δ′′ij))

 ,
(3.11)
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with ∃x̄′α′ ∈ A′, α′′ ∈ A′′, I = {1, 2, ..., n}, ∃ȳ′n−1β
′
n−1 ∈ A′, ∃ȳ′nβ′n ∈ A′, for all i ∈ I with i 6= n

and i 6= n−1 we have ∃ȳ′iβ′i ∈ A′ and β′′i ∈ A′′ and for all j ∈ Jn−1 we have ∃x̄′jα′j ∈ A′, α′′j ∈ A′′,
∃z̄′ijδ′ij ∈ A′ and δ′′ij ∈ A′′.

(2) By repeating the preceding steps in each sub-formula of (3.9) or (3.11) of the form

∃x̄′j α′j ∧ α′′j ∧
∧

i∈I,i6=n

¬(∃z̄′ij δ′ij ∧ δ′′ij),

we get a wnfv formula equivalent in T of the form

T |=

(∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (
∧

i∈I,i6=n,i6=n−1 ¬(∃ȳ′i β′i ∧ β′′i )) ∧ ¬(∃ȳ′n−1 β
′
n−1)))

∨
∨

j∈Jn−1

(∃x̄′j α′j ∧ α′′j ∧
∧

i∈I,i6=n,i6=n−1 ¬(∃z̄′ij δ′ij ∧ δ′′ij))

 ,
with ∃x̄′α′ ∈ A′, α′′ ∈ A′′, I = {1, 2, ..., n}, ∃ȳ′n−1β

′
n−1 ∈ A′, for all i ∈ I with i 6= n and i 6= n−1

we have ∃ȳ′iβ′i ∈ A′ and β′′i ∈ A′′ and for all j ∈ Jn−1 we have ∃x̄′jα′j ∈ A′, α′′j ∈ A′′, ∃z̄′ijδ′ij ∈ A′
and δ′′ij ∈ A′′.

From (1) and (2) we deduce that it is enough to apply the preceding steps a finite numbers
of time on each disjunction by saving the formulas of the form ¬(∃ȳ′iβ′i), to eliminate all sub-
formulas of the form ¬(∃ȳ′iβ′i ∧ β′′i ). At the end we get a disjunction of formulas of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧
j∈J

¬(∃ȳ′j β′j)),

with ∃x̄′α′ ∈ A′, α′′ ∈ A′′, J a finite possibly empty set and for all j ∈ J we have ∃ȳ′j β′j ∈ A′. 2

3.2.3 Completeness

Theorem 3.2.3.1 If T is zero-infinite-decomposable then T is complete.

Proof. Let T be a zero-infinite-decomposable theory which satisfies the five conditions of
Definition 2.2.1.1. Let us show that T is complete using Property 1.2.3.1 by taking formulas
of the form ∃x̄ α, with α ∈ A as basic formulas. Note that according to Definition 3.2.1.1, the
formulas of A′ are of the form ∃x̄α with α ∈ A and A′′ is a sub-set of A.

Let us show that the first condition of Property 1.2.3.1 holds, i.e. every flat formula is
equivalent in T to a wnfv boolean combination of basic formulas. If ϕ is a flat formula, then
according to the fourth point of Definition 3.2.1.1, ϕ is equivalent in T to a disjunction of
elements of A, thus to a disjunction of formulas of the form ∃ε α with α ∈ A, which is a boolean
combination of basic formulas.

Let us show that the second condition of property 1.2.3.1 holds, i.e. every basic formula
without free variables is equivalent, either to true, or to false in T . Let ∃x̄ α with α ∈ A be a
basic formula without free variables. According to Property 3.2.2.1, this formula is equivalent
in T to a wnfv formula of the form ∃x̄′ α′ ∧ α′′ with ∃x̄′ α′ ∈ A′ and α′′ ∈ A′′. According to the
fifth point of Definition 3.2.1.1, we have x̄ = ε, α′ ∈ {true, false} and α′′ ∈ {true, false}. Since
T has at least one model then either T |= ϕ or T |= ¬ϕ.

Let us show that the third condition of Property 1.2.3.1 holds, i.e. every formula of the form

∃x (
∧

i∈I(∃x̄i αi)) ∧ (
∧

j∈J ¬(∃ȳj βj)), (3.12)

with αi ∈ A for all i ∈ I and βj ∈ A for all j ∈ J , is equivalent in T to a wnfv boolean
combination of basic formulas, i.e. a wnfv boolean combination of formulas of the form ∃x̄α with
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α ∈ A. By lifting the quantifications ∃x̄i after having possibly renamed some variables which
occur in each x̄i, the formula (3.12) is equivalent in T to wnfv formula of the form

∃x̄ (
∧

i∈I αi) ∧
∧

j∈J ¬(∃ȳj βj),

with αi ∈ A for all i ∈ I and βj ∈ A for all j ∈ J . According to Definition 3.2.1.1, the set A is
closed for the conjunction. Thus, the preceding formula is equivalent in T to a wnfv formula of
the form

∃x̄ α ∧
∧

j∈J ¬(∃ȳj βj),

with α ∈ A and βj ∈ A for all j ∈ J . According to Corollary 3.2.2.3, the preceding formula is
equivalent in T to a wnfv disjunction of formulas of the form

∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧

i∈I ¬(∃ȳ′iβ′i)). (3.13)

with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′ and ∃ȳ′iβ′i ∈ A′ for all i ∈ I. Let us show that each formula of
this disjunction is equivalent in T to a wnfv boolean combination of basic formulas. Let ϕ be
a formula of the form (3.13). Let us denote by I1 the set of the i ∈ I such that x′′n has no
occurrences in ∃ȳ′iβ′i. The formula ϕ is equivalent in T to

∃x̄′α′ ∧ (∃x′′1...∃x′′n−1

[
(
∧

i∈I1 ¬(∃ȳ′iβ′i))∧
(∃x′′n α′′ ∧

∧
i∈I−I1 ¬(∃ȳ′iβ′i))

]
).

Since α′′ ∈ A′′ and ∃ȳ′iβ′i ∈ A′ for all i ∈ I and according to Property 3.1.0.4 and the points 2
and 3 of Definition 3.2.1.1, the preceding formula is equivalent in T , to

∃x̄′α′ ∧ (∃x′′1...∃x′′n−1 (
∧

i∈I1 ¬(∃ȳ′iβ′i)) ∧ (∃x′′nα′′)),

which, since α′′ ∈ A′′ and according to the second point of the third condition Definition 3.2.1.1,
is equivalent in T to a wnfv formula of the form

∃x̄′α′ ∧ (∃x′′1...∃x′′n−1 (
∧

i∈I1 ¬(∃ȳ′iβ′i)) ∧ α′′n),

with ∃x̄′α′ ∈ A′, α′′n ∈ A′′ and ∃ȳ′iβ′i ∈ A′ for all i ∈ I1, i.e. to

∃x̄′α′ ∧ (∃x′′1...∃x′′n−1 α
′′
n ∧

∧
i∈I1 ¬(∃ȳ′iβ′i)).

By repeating the three preceding steps n−1 times and by denoting by Ik the set of the i ∈ Ik−1

such that x′′(n−k+1) has no occurrences in ∃ȳ′iβ′i, we get a wnfv formula equivalent in T , of the
form

∃x̄′α′ ∧ α′′1 ∧
∧

i∈In
¬(∃ȳ′iβ′i),

with ∃x̄′ α′ ∈ A′, α′′1 ∈ A′′ and ∃ȳ′iβ′i ∈ A′ for all i ∈ In. Since ∃x̄′α′ ∈ A′, then according to
the second point of Definition 3.2.1.1, we have T |= ∃?x̄′α′, thus T |= ∃?x̄′α′ ∧ α′1. According to
Corollary 3.1.0.7, the preceding formula is equivalent in T to

(∃x̄′α′ ∧ α′′1) ∧
∧

i∈In
¬(∃x̄′ α′ ∧ α′′1 ∧ ∃ȳ′iβ′i),

which by lifting the quantifications ∃ȳ′i and by renaming some variables which occur in each ȳ′i,
is equivalent in T to a wnfv of the form

(∃x̄′α′ ∧ α′′1) ∧
∧

i∈In
¬(∃x̄′ȳ′i α′ ∧ α′′1 ∧ β′i),
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with α′, α′′1, and all the β′i element of A, and ∃x̄α′ ∈ A′. Since the formulas α′, α′′1, β′i belong to
A and since A is closed for the conjunction, then the preceding formula is equivalent in T to a
wnfv formula of the form

(∃x̄α) ∧
∧

i∈In
¬(∃ȳi βi),

with α ∈ A and βi ∈ A for all i ∈ I. This formula is a boolean combination of formulas of the
form ∃x̄α with α ∈ A, i.e. a boolean combination of basic formulas. Thus, the third condition
of Property 1.2.3.1 holds.

Since T satisfies the three conditions of Property 1.2.3.1, then T is a complete theory. 2

According to Theorem 3.2.3.1 and Corollary 1.2.3.2, we have the following corollary:

Corollary 3.2.3.2 If T is zero-infinite-decomposable and if for every formula of the form ∃x̄′α′∧
α′′ which belongs to A′ we have x̄′ = ε and α′ ∧ α′′ ∈ AT , then T accepts a full elimination of
quantifiers.

Proof. Let T be a zero-infinite-decomposable theory such that for each formula of the form
∃x̄′α′∧α′′ which belongs to A′ we have x̄′ = ε and α′∧α′′ ∈ AT . Let ϕ be formula. In the proof
of Theorem 3.2.3.1, we have shown that T satisfies the three conditions of Property 1.2.3.1 using
formulas of the form ∃x̄α with α ∈ A as basic formulas. Thus, according to Corollary 1.2.3.2,
the formula ϕ is equivalent in T to a wnfv boolean combination of basic formulas, i.e. a wnfv
boolean combination of formulas of the form ∃x̄α with α ∈ A. According to Property 3.2.2.1,
each one of these basic formulas is equivalent in T to a wnfv formula of the form ∃x̄′α′ ∧α′′ with
∃x̄′ α′ ∈ A′ and α′′ ∈ A′′. Since x̄′ = ε and since α′ ∧ α′′ ∈ AT , then the formula ϕ is equivalent
in T to a wnfv boolean combination φ of conjunctions of atomic formulas. According to the
definition of the atomic formulas (Chapter 1), it is clear that φ does not contain quantifiers. 2

Let us now present a property that links the infinite-decomposable theories to the zero-
infinite-decomposable theories. According to Property 3.1.0.5 and Property 2.1.2.3, we have:

Property 3.2.3.3 An infinite-decomposable theory T is zero-infinite decomposable if for each
formula of the form ∃x̄′′ α′′ ∈ A′′, the formula ¬α′′ is equivalent in T to a disjunction of elements
of A.

It is obvious that the sets A and A′′ cited in this property are those that appear in the definition of
the infinite-decomposable theory and not those of the definition of the zero-infinite-decomposable
theories. The theories Eq, Ra and T presented in Chapter 2, are zero-infinite-decomposable. In
fact, we have shown their infinite-decomposability using a set A′′ containing formulas of the form
∃x̄′′ true. Thus, since ¬true is equivalent to the formula false in all these theories and since the
formula false belongs to A, then each one of these theories are zero-infinite-decomposable.

3.2.4 Fundamental example

Let F be an empty set of function symbols and R a set of relation symbols containing only the
binary relation symbol <. If t1 and t2 are terms, then we write t1 < t2 for < (t1, t2). Let Tord

be the theory of the linear dense order relation without endpoints, whose signature is S = F ∪R
and whose set of axioms is the set of the following propositions:

1 ∀x¬x < x,
2 ∀x∀y∀z (x < y ∧ y < z) → x < z,
3 ∀x∀y x < y ∨ x = y ∨ y < x,
4 ∀x∀y x < y → (∃z x < z ∧ z < y),
5 ∀x∃y x < y,
6 ∀x∃y y < x.
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Chapter 3. Zero-infinite-decomposable theory

Since F = ∅ then all the equations and relations are flat. Let us introduce three properties that
will help us to show the zero-infinite-decomposability of this theory. These properties are well
known and deduced from the preceding axiomatization. The first one shows the full elimination
of quantifiers of Fourier. The second one shows the behavior of the negation with the relation
< and the last one introduces the notion of zero-infinite in every model of Tord due to the fact
that Tord is dense and without endpoints.

Property 3.2.4.1 Let I and J be finite possibly empty sets. We have

Tord |= (∃x (
∧
i∈I

x < yi) ∧ (
∧
j∈J

zj < x)) ↔
∧
i∈I

∧
j∈J

(zj < yi).

Property 3.2.4.2

Tord |= ∀xy ¬(x < y) ↔ ((x = y) ∨ (y < x)).

Property 3.2.4.3 Let M be a model of Tord . Let J and K be two finite possibly empty sets of
individuals of M and let ϕ(x) be the following M -formula:

(
∧
j∈J

j < x) ∧ (
∧

k∈K

x < k).

The set of the individuals i of M such that M |= ϕ(i) is empty or infinite

Suppose that the variables of V are ordered by a linear dense order relation without endpoints
denoted by �.

Definition 3.2.4.4 A conjunction α of flat formulas is called (�)-solved in Tord if

• all the equations of α are of the form x = y with x � y,

• all the left hand sides of the equations of α are distinct and have one and only occurrence
in α,

• α does not contain sub-formulas of the form false or

x0 < x1 ∧ x1 < x2 ∧ ... ∧ xn−1 < xn ∧ xn < x0.

Example 3.2.4.5 Let x, y z and w be variables such that x � y � z � w. The formula
x = y ∧ z < x is not (�)-solved because x occurs in the left hand side of the equation x = y and
occurs also in the relation z < x. The formula x = y ∧ y < z ∧ z < w ∧ w < y is not (�)-solved
because the last condition of Definition 3.2.4.4 does not hold. The formula x = z∧ y = z∧ z < w
is (�)-solved.

Property 3.2.4.6 Every conjunction of flat formulas is equivalent in Tord , either to false, or
to a (�)-solved wnfv conjunction of flat formulas.

Proof. Let us introduce the set of the following rewriting rules:

(1) x = x =⇒ true,
(2) y = x =⇒ x = y,
(3) x = y ∧ x = z =⇒ x = y ∧ z = y,
(4) x = y ∧ z = x =⇒ x = y ∧ z = y,
(5) x = y ∧ x < z =⇒ x = y ∧ y < z,
(6) x = y ∧ z < x =⇒ x = y ∧ z < y,
(7) false ∧ α =⇒ false,
(8) x0 < x1 ∧ ... ∧ xn−1 < xn ∧ xn < x0 =⇒ false,
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3.2. Zero-infinite-decomposable theory

The rules (2)...(6) are applied only if x � y. This condition prevents infinite loops. In the rule
(8), n is a possibly nul natural numbers11. It is clear that every repeated application of the
preceding rewriting rules on a conjunction of flat formulas is terminating, and produces either
false or a wnfv (�)-solved conjunction of flat equations equivalent in Tord .

Property 3.2.4.7 Let α be a (�)-solved conjunction of equations and x̄ the vector the left hand
sides of the equations of α. Let β be a (�)-solved conjunction of relations. We have

1. Tord |= ∃!x̄ α.

2. Tord |= ∃{false}o∞ xβ.

3. for all x ∈ var(α) we have Tord |= ∃?xα.

The first point holds since all the left hand sides of the equations of α are distinct and have
one and only one occurrence in α. Thus, for each model of Tord and for each instantiation of
the variables which occur in the right hand sides of the equations of α, there exists one and
only value for the left hand sides of the equations of α. The second point is a consequence of
Property 3.2.4.3 and holds since the domains of all the models of Tord are infinite12. The third
point holds since in a (�)-solved conjunction of equations there exists no formulas of the form
x = x (because x 6� x). Thus, using the properties of the equality, for every model of Tord and
for every instantiation of the variables of var(α)− {x}, either there exists a unique solution for
x, or there exists a contradiction in this instantiation and thus there exists no possible values for
x.

Property 3.2.4.8 The theory Tord is zero-infinite-decomposable.

Proof. Let us show that Tord satisfies the conditions of Definition 3.2.1.1. The sets A, A′, A′′

and Ψ(u) are chosen as follows:

• A is the set PL.

• A′ is the set of formulas of the form ∃ε α′ where α′ is either the formula false, or a (�)-solved
conjunction of flat equations,

• A′′ is the set of the (�)-solved conjunctions of relations,

• Ψ(u) = {false}.

It is clear that, FL is closed for the conjunction, A′ contains formulas of the form ∃x̄′ α′ with
α′ ∈ FL and A′′ is a sub-set of FL.

Let us show that Tord satisfies the first condition of Definition 3.2.1.1. Let α ∈ FL and ψ
any formula. Let x̄ be a vector of variables. Let us choose the order � such that the variables
of x̄ are greater than the free variables of ∃x̄ α. According to Property 3.2.4.6 two cases arise:

Either, the formula α is equivalent to false in Tord and thus the formula ∃x̄α∧ψ is equivalent
in Tord to a decomposed formula of the form

∃ε false ∧ (∃ε true ∧ (∃ε true ∧ ψ)).

11If n = 0, then the rule will be of the form x0 < x0 ↔ false.
12Since each model has at least one individual, then using the axioms 1,5 and 6 we create an infinity of distinct

individuals in every model of Tord .
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Chapter 3. Zero-infinite-decomposable theory

Or, the formula α is equivalent in Tord to a (�)-solved conjunction β of flat equations and
relations. Let Xg be the set of the variables of x̄ which occur in a left hand side of equations of
β. Let Xn be the set of the variables of x̄ which do not occur in left hand sides of equations of
β. The formula ∃x̄α ∧ ψ is equivalent in Tord to a decomposed formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)), (3.14)

with x̄′ = ε. The formula α′ contains the conjunction of the equations of β whose left hand
sides do not belong to Xg, i.e. whose left hand sides are free in ∃x̄β. The vector x̄′′ contains
the variables of Xn. The formula α′′ contains the conjunction of the relations of β. The vector
x̄′′′ contains the variables of Xg. The formula α′′′ is the conjunction of the equations of β
whose left hand sides belong to Xg. According to our construction, it is clear that ∃x̄′α′ ∈ A′,
α′′ ∈ A′′ and α′′′ ∈ A. Moreover, according to the first point of Property 3.2.4.7, we have
Tord |= ∀x̄′′α′′ → ∃!x̄′′′α′′′. Let us show now that (3.14) and ∃x̄α ∧ ψ are equivalent in Tord .
Let X, X ′, X ′′ and X ′′′ be the sets of the variables of the vectors13 of x̄, x̄′, x̄′′ and x̄′′′. If α
is equivalent to false in Tord then the equivalence of the decomposition is evident. Else, β is a
(�)-solved conjunction of equations and relations. Thus, according to our construction we have:
X = X ′ ∪ X ′′ ∪ X ′′′, X ′ ∩ X ′′ = ∅, X ′ ∩ X ′′′ = ∅, X ′′ ∩ X ′′′ = ∅, X ′ = ∅, for all x′′i ∈ X ′′ we
have x′′i 6∈ var(α′) and for all x′′′i ∈ X ′′′ we have x′′′i 6∈ var(α′ ∧ α′′). These properties come
from the definition of a (�)-solved conjunction of flat formulas and the order � which has been
chosen such that the quantified variables of ∃x̄ α are greater than the free variables of ∃x̄ α. On
the other hand, each equation and each relation of β occurs in α′ ∧ α′′ ∧ α′′′ and each equation
and each relation of α′ ∧ α′′ ∧ α′′′ occurs in β and thus Tord |= β ↔ (α′ ∧ α′′ ∧ α′′′). We have
shown that the quantifications are coherent and the equivalence Tord |= β ↔ α′ ∧α′′ ∧α′′′ holds.
According to Property 3.2.4.6, we have Tord |= α↔ β and thus the decomposition preserves the
equivalence in Tord .

Example 3.2.4.9 Let us decompose the formula

∃xyz v = w ∧ z = z ∧ z = x ∧ v = y ∧ v < z.

Let us choose first an order � such that x � y � z � v � w. Let us now transform the formula
v = w ∧ z = z ∧ z = x ∧ v = y ∧ v < z into a (�)-solved conjunction of flat formulas. The
preceding formula is equivalent in Tord to

∃xyz v = w ∧ x = z ∧ y = w ∧ w < z.

This formula is equivalent in Tord to a decomposed formula of the form

∃ε v = w ∧ (∃z w < z ∧ (∃xy x = z ∧ y = w)).

The theory Tord satisfies the second condition of Definition 3.2.1.1 according to the third
point of Property 3.2.4.7 and using the fact that x̄′ = ε. The theory Tord satisfies the first point
of the third condition of Definition 3.2.1.1 according to Property 3.2.4.2 which enables us to show
that every formula of the form ¬ϕ with ϕ a (�)-solved conjunction of relations is equivalent in
Tord to a disjunction of relations and equations, thus to a disjunction of elements of FL. The
theory Tord satisfies the second point of the third condition of Definition 3.2.1.1 according to
Property 3.2.4.1. The theory Tord satisfies the third point of the third condition of Definition
3.2.1.1 according to the second point of Property 3.2.4.7. The theory Tord satisfies the fourth

13Of course, if x̄ = ε then X = ∅
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condition of Definition 3.2.1.1 since A = FL. The theory Tord satisfies the last condition of
Definition 3.2.1.1 because (1) A′ is of the form ∃ε α′ where α′ is either the formula false, or a
(�)-solved conjunction of flat equations, (2) A′′ contains (�)-solved conjunctions of relations.
Thus, if ∃ε α′ ∧ α′′ has no free variables then α′ ∈ {true, false} and α′′ ∈ {true}.

We have shown that Tord satisfies all the conditions of Definition 3.2.1.1. Thus, it is zero-
infinite-decomposable. 2

Note that Tord accepts a full elimination of quantifiers. In fact, Corollary 3.2.3.2 confirms
this result since for each formula ∃x̄′α′ ∧ α′′ with ∃x̄′α′ ∈ A′ and α′′ ∈ A′′ we have x̄′ = ε and
α′ ∧ α′′ ∈ FL.

3.3 A decision procedure in zero-infinite-decomposable theories

Let T be a zero-infinite-decomposable theory together with its set of function symbols F and its
set of relation symbols R. The sets Ψ(u), A, A′ and A′′ are now known and fixed.

3.3.1 Normalized Formula

Definition 3.3.1.1 a normalized formula ϕ of depth d ≥ 1 is a formula of the form

¬(∃x̄ α ∧
∧
i∈I

ϕi), (3.15)

with I finite possibly empty set, α ∈ FL, all the ϕi are normalized formulas of depth di with
d = 1 + max{0, d1, ..., dn} and all the quantified variables of ϕ have distinct names and different
form those of the free variables.

Note that the normalized formulas defined in Chapter 2 of infinite-decomposable theories are the
same than those defined here. Thus, we can use the following property14

Property 3.3.1.2 every formula ϕ is equivalent in the empty theory15 to a wnfv normalized
formula of depth d ≥ 1.

3.3.2 Working formula

Definition 3.3.2.1 a working formula ϕ of depth d ≥ 1 is a formula of the form

¬(∃x̄ α ∧
∧
i∈I

ϕi), (3.16)

with I a finite possibly empty set, α ∈ A, all the ϕi are working formulas of depth di with
d = 1 + max{0, d1, ..., dn} and all the quantified variables of ϕ have distinct names and different
from those of the free variables.

Property 3.3.2.2 Every formula is equivalent in T to a wnfv conjunction of working formulas.

Proof. Let ϕ be a formula. According to Property 3.3.1.2, ϕ is equivalent in T to a wnfv
normalized formula φ. Let us show by recurrence on the depth of φ that φ is equivalent in T to
a working formula. If φ is of depth 1, then it is of the form

¬(∃x̄α), (3.17)
14Already proved in Property 2.3.1.3 of chapter 2.
15Thus in every theory.
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with α ∈ FL. According to the point 4 of Definition 3.2.1.1, each conjunction of flat formulas is
equivalent in T to a disjunction of elements of A. Thus, there exists a wnfv disjunction

∨
j∈J αj

with αj ∈ A for all j ∈ J such that T |= α↔
∨

j∈J αj . Thus, the formula (3.17) is equivalent in
T to

¬(∃x̄ (
∨
j∈J

αj)),

which is equivalent in T to
¬
∨
j∈J

(∃x̄ αj),

i.e. to ∧
j∈J

¬(∃x̄ αj),

which by renaming the quantified variables by distinct names and different from those of the free
variables gives a conjunction of working formulas. Suppose now that every normalized formula
of depth n is equivalent in T to a conjunction of working formulas, and let us show that every
normalized formula of depth n+ 1 is equivalent in T to a conjunction of working formulas. Let
φ be a normalized formula of depth n+ 1. The formula φ is of the form

¬(∃x̄ α ∧
∧
i∈I

ϕi), (3.18)

where all the ϕi are normalized formulas of depth less or equal to n. According to the recurrence
hypothesis, each one of these normalized formulas ϕi is equivalent in T to a conjunction of
working formulas. Thus, the formula (3.18) is equivalent in T to a formula of the form

¬(∃x̄ α ∧
∧
i∈I

ϕi), (3.19)

where all the ϕi are working formulas and α ∈ A. According to the point 4 of Definition 3.2.1.1,
every conjunction of flat formulas is equivalent in T to a disjunction of elements of A. Thus, there
exists a wnfv disjunction

∨
j∈J αj with αj ∈ A for all j ∈ J and such that T |= α ↔

∨
j∈J αj .

Then, the formula (3.19) is equivalent in T to

¬(∃x̄ (
∨
j∈J

αj) ∧
∧
i∈I

ϕi), (3.20)

which is equivalent in T to
¬(∃x̄

∨
j∈J

(αj ∧
∧
i∈I

ϕi)),

i.e. to
¬
∨
j∈J

(∃x̄ αj ∧
∧
i∈I

ϕi),

and thus to ∧
j∈J

¬(∃x̄ αj ∧
∧
i∈I

ϕi),

which by renaming the quantified variables by distinct names and different from those of the free
variables gives a conjunction of working formulas. 2
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Definition 3.3.2.3 A solved formula is a formula of the form

¬(∃x̄′ α′ ∧ α′′ ∧
∧
i∈I

¬(∃ȳ′i β′i)),

with I a finite possibly empty set, ∃x̄′α′ ∈ A′, α′′ ∈ A′′, ∃ȳ′iβ′i ∈ A′ for all i ∈ I, α′ and α′′ are
different from the formula false and all the β′i are different from the formulas true and false.

Property 3.3.2.4 Let ϕ be a conjunction of solved formulas without free variables. The con-
junction ϕ is either the formula true, or the formula

∧
¬true.

Proof. Let ϕ be a conjunction of solved formulas without free variables. According to Definition
3.3.2.3, ϕ is of the form

true ∧
∧
i∈I

¬(∃x̄′iα′i ∧ α′′i ∧
∧

j∈Ji

¬(∃ȳ′ijβ′ij)) (3.21)

with

1. I a finite possibly empty set,

2. (∃x̄′iα′i) ∈ A′ and α′′i ∈ A′′ for all i ∈ I,

3. (∃ȳ′ijβ′ij) ∈ A′ for all i ∈ I and all j ∈ Ji,

4. α′i and α′′i are different from false for all i ∈ I,

5. β′ij is different from true and false for all i ∈ I and all j ∈ Ji.

Since these solved formulas have no free variables and since T is zero-infinite-decomposable then
according to the fifth point of Definition 3.2.1.1 and the conditions 2 and 3 of (3.21) we have

• (*) for every formula ∃x̄′iα′i ∧ α′′i we have x̄′ = ε, α′i ∈ {true, false} and α′′i ∈ {true, false},

• (**) for every formula ∃ȳ′ijβ′ij we have ȳ′ij = ε and β′ij ∈ {true, false}.

According to the condition 4 of (3.21), all the α′i and α′′i are different from false, thus according
to (*) we get

• (***) The formulas ∃x̄′iα′i ∧ α′′i are of the form ∃εtrue ∧ true.

On the other hand, according to (**) and the condition 5 of (3.21), we deduce that the sets Ji

of (3.21) are empty. Thus, according to (***) we deduce that ϕ is of the form

true ∧ (
∧
i∈I

¬(∃εtrue ∧ true))

If I = ∅ then ϕ is the formula true, else, since we do not distinguish two formulas which can be
made equal using the following transformations of sub-formulas

ϕ ∧ ψ =⇒ ψ ∧ ϕ, (ϕ ∧ ψ) ∧ φ =⇒ ϕ ∧ (ψ ∧ φ),
ϕ ∧ true =⇒ ϕ, ϕ ∨ false =⇒ ϕ,

then ϕ is the formula ∧
¬true.

2
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Property 3.3.2.5 Every solved formula is equivalent in T to wnfv boolean combination of for-
mulas of the form ∃x̄′ α′ ∧ α′′ with ∃x̄′ α′ ∈ A′ and α′′ ∈ A′′.

Proof. Let ϕ be a solved formula. According to Definition 3.3.2.3, the formula ϕ is of the form

¬(∃x̄′ α′ ∧ α′′
∧
i∈I

¬(∃ȳ′i β′i)),

with ∃x̄′α′ ∈ A′, α′′ ∈ A′′ and ∃ȳ′iβ′i ∈ A′ for all i ∈ I. Since ∃x̄′α′ ∈ A′ then according to
Definition 3.2.1.1, T |= ∃?x̄′α′ and thus T |= ∃?x̄′α′ ∧ α′′. Then, according to Corollary 3.1.0.7,
ϕ is equivalent in T to

¬((∃x̄′ α′ ∧ α′′) ∧
∧
i∈I

¬(∃x̄′ α′ ∧ α′′ ∧ (∃ȳ′i β′i))).

According to the definition of working formula, all the quantified variables of ϕ have distinct
names and different from those of the free variables, thus the preceding formula is equivalent in
T to

¬((∃x̄′ α′ ∧ α′′) ∧
∧
i∈I

¬(∃x̄′ȳ′i α′ ∧ α′′ ∧ β′i)).

Since ∃x̄′α′ ∈ A′, α′′ ∈ A′′ and ∃ȳ′iβ′i ∈ A′ for all i ∈ I, then α′ ∈ A, α′′ ∈ A and β′i ∈ A. Since A
is closed for the conjunction, then α′ ∧ α′′ ∧ β′i ∈ A for all i ∈ I. According to Property 3.2.2.1,
the preceding formula is equivalent in T to a wnfv formula of the form

¬((∃x̄′ α′ ∧ α′′) ∧
∧
i∈I

¬(∃ȳ′i β′i ∧ β′′i )),

with ∃x̄′α′ ∈ A′, α′′ ∈ A′′ and for all i ∈ I we have ∃ȳ′i β′i ∈ A′ and β′′i ∈ A′′. The preceding
formula is finally equivalent in T to

(¬(∃x̄′ α′ ∧ α′′)) ∨
∨
i∈I

(∃ȳ′i β′i ∧ β′′i ).

which is a boolean combination wnfv of elements of the form ∃x̄′ α′ ∧ α′′ with ∃x̄′ α′ ∈ A′ and
α′′ ∈ A′′. 2

3.3.3 The rewriting rules

We present now the rewriting rules which transform a conjunction ϕ of working formulas of any
depth d into a wnfv conjunction φ of solved formulas which is equivalent to ϕ in T . To apply the
rule p1 =⇒ p2 to the working formula p means to replace in p, a sub-formula p1 by the formula
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p2, by considering that the connector ∧ is associative and commutative.

(1) ¬
[
∃x̄ α ∧ ϕ∧

¬(∃ȳ true)

]
=⇒ true

(2) ¬
[
∃x̄ α ∧ false ∧ ϕ

]
=⇒ true

(3) ¬
[
∃x̄ α∧∧

i∈I ¬(∃ȳi βi)

]
=⇒ ¬

[
∃x̄′x̄′′ α′ ∧ α′′∧∧

i∈I ¬(∃x̄′′′ȳi α
′′′ ∧ βi)∗

]

(4) ¬
[
∃x̄ α ∧ ϕ∧

¬(∃ȳ′ β′ ∧ β′′)

]
=⇒

[
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧∧

i∈I ¬(∃x̄ȳ′ α ∧ β′ ∧ β′′i ∧ ϕ)∗

]

(5) ¬
[
∃x̄ α∧∧

i∈I ¬(∃ȳ′i β′i)

]
=⇒ ¬

[
∃x̄′ α′ ∧ α′′∗∧

i∈I′ ¬(∃ȳ′i β′i)

]

(6) ¬


∃x̄ α ∧ ϕ∧

¬
[
∃ȳ′ β′ ∧ β′′∧∧

i∈I ¬(∃z̄′i δ′i)

]  =⇒
[
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′ ∧ β′′))∧∧

i∈I ¬(∃x̄ȳ′z̄i α ∧ β′ ∧ β′′ ∧ δ′i ∧ ϕ)∗

]

with α an element of A, ϕ a conjunction of working formulas and I a finite possibly empty
set. In the rule (3), the formula ∃x̄ α is equivalent in T to a decomposed formula of the form
∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)) with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A, T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′
and ∃x̄′′′ α′′′ is different from ∃ε true. All the βi belong to A. The formula (∃x̄′′′ȳi α

′′′ ∧ βi)∗

is the formula (∃x̄′′′ȳi α
′′′ ∧ βi) in which we have renamed the variables which occur in x̄′′′

by distinct names and different from those of the free variables. In the rule (4), the formula
∃x̄ α is equivalent in T to a decomposed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃ε true)) with
∃x̄′ α′ ∈ A′ and α′′ ∈ A′′. The formula ∃ȳ′ β′ belongs to A′. The formula β′′ belongs to A′′ and
is different from the formula true. Moreover, T |= (¬β′′) ↔

∨
i∈I β

′′
i with β′′i ∈ A. The formula

(∃x̄ȳ′ α∧β′∧β′′i ∧ϕ)∗ is the formula (∃x̄ȳ′ α∧β′∧β′′i ∧ϕ) in which we have renamed the variables
which occur in x̄ and ȳ′ by distinct names and different from those of the free variables. In the
rule (5), the formula ∃x̄ α is not of the form ∃x̄ α1 ∧ α2 with ∃x̄ α1 ∈ A′ and α2 ∈ A′′, and is
equivalent in T to a decomposed formula of the form ∃x̄′ α′∧(∃x̄′′ α′′∧(∃ε true)) with ∃x̄′ α′ ∈ A′
and α′′ ∈ A′′. Each formula ∃ȳ′i β′i belongs to A′. The set I ′ is the set of the i ∈ I such that ∃ȳ′iβ′i
has no occurrences of any variable of x̄′′. Moreover, T |= (∃x̄′′α′′) ↔ α′′∗ with α′′∗ ∈ A′′. In the
rule (6), I 6= ∅, ∃ȳ′ β′ ∈ A′, ∃z̄′i δ′i ∈ A′ and β′′ ∈ A′′. The formula (∃x̄ȳ′z̄i α ∧ β′ ∧ β′′ ∧ δ′i ∧ ϕ)∗

is the formula (∃x̄ȳ′z̄i α ∧ β′ ∧ β′′ ∧ δ′i ∧ ϕ) in which we have renamed the variables which occur
in x̄ and ȳ′ by distinct names and different from those of the free variables.

Property 3.3.3.1 Every repeated application of our rewriting rules on a conjunction ϕ of work-
ing formulas terminates and produces a wnfv conjunction φ of solved formulas equivalent to ϕ in
T .

Proof, first part : Let us show that for each rule of the form p =⇒ p′ we have T |= p ↔ p′

and the formula p′ remains a conjunction of working formulas. It is clear that the rules 1 and 2
are correct in T .
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Correctness of the rule (3):

¬
[
∃x̄ α∧∧

i∈I ¬(∃ȳi βi)

]
=⇒ ¬

[
∃x̄′x̄′′ α′ ∧ α′′∧∧

i∈I ¬(∃x̄′′′ȳi α
′′′ ∧ βi)∗

]

where the formula ∃x̄ α is equivalent in T to a decomposed formula of the form ∃x̄′ α′∧ (∃x̄′′ α′′∧
(∃x̄′′′ α′′′)) with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A, T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′ and ∃x̄′′′ α′′′ different from
∃ε true. The formula (∃x̄′′′ȳi α

′′′ ∧ βi)∗ is the formula (∃x̄′′′ȳi α
′′′ ∧ βi) in which we have renamed

the variables which occur in x̄′′′ by distinct names and different from those of the free variables.
Let us show the correctness of this rule. According to the conditions of this rule, the formula

∃x̄ α is equivalent in T to a decomposed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)) with
∃x̄′ α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A, T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′ and ∃x̄′′′ α′′′ different from ∃ε true. Thus
the left hand side of this rule is equivalent in T to

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧ (∃x̄′′′α′′′ ∧
∧
i∈I

¬(∃ȳi βi)))).

According to Corollary 3.1.0.8, the preceding formula is equivalent in T to

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧
i∈I

¬(∃x̄′′′α′′′ ∧ (∃ȳi βi)))).

According to the definition of working formula, the quantified variables have distinct names and
different from those of the free variables. We can then lift the quantifications ∃ȳi. The preceding
formula is thus equivalent in T to

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧
i∈I

¬(∃x̄′′′ȳi α
′′′ ∧ βi))),

which, by renaming the variables which occur in x̄′′′ by distinct names and different from those
of the free variables, is equivalent in T to

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧
i∈I

¬(∃x̄′′′ȳi α
′′′ ∧ βi)∗)),

thus, the rule (3) is correct in T .

Correctness of the rule (4):

¬
[
∃x̄ α ∧ ϕ∧

¬(∃ȳ′ β′ ∧ β′′)

]
=⇒

[
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧∧

i∈I ¬(∃x̄ȳ′ α ∧ β′ ∧ β′′i ∧ ϕ)∗

]

where the formula ∃x̄ α is equivalent in T to a decomposed formula of the form ∃x̄′ α′∧ (∃x̄′′ α′′∧
(∃ε true)) with ∃x̄′ α′ ∈ A′ and α′′ ∈ A′′. The formula ∃ȳ′ β′ belongs to A′. The formula β′′

belongs to A′′ and is not of the form true. Moreover, T |= (¬β′′) ↔
∨

i∈I β
′′
i with β′′i ∈ A. The

formula (∃x̄ȳ′ α∧β′∧β′′i ∧ϕ)∗ is the formula (∃x̄ȳ′ α∧β′∧β′′i ∧ϕ) in which we have renamed the
variables which occur in x̄ and ȳ′ by distinct names and different from those of the free variables.

Since ∃ȳ′β′ ∈ A′, then according to the second point of Definition 3.2.1.1, we have T |= ∃?ȳ′β′,
thus according to Corollary 3.1.0.6, the left hand side of our rule is equivalent in T to

¬
[
(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∨

(∃x̄ȳ′ α ∧ ϕ ∧ β′ ∧ ¬β′′)

]
.
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Since T |= (¬β′′) ↔ (
∨

i∈I β
′′
i ) (always possible according to the condition 3 of Definition 3.2.1.1),

then the preceding formula is equivalent in T to

¬
[
(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∨

(∃x̄ȳ′ α ∧ ϕ ∧ β′ ∧ (
∨

i∈I β
′′
i ))

]
,

i.e. to

¬
[
(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∨

(∃x̄ȳ′
∨

i∈I(α ∧ ϕ ∧ β′ ∧ β′′i ))

]
,

i.e. to

¬
[
(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∨∨

i∈I(∃x̄ȳ′ α ∧ β′ ∧ β′′i ∧ ϕ)

]
,

and thus to [
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧∧

i∈I ¬(∃x̄ȳ′ α ∧ β′ ∧ β′′i ∧ ϕ)

]
,

which, by denoting by (∃x̄ȳ′ α∧β′ ∧β′′i ∧ϕ)∗ the formula (∃x̄ȳ′ α∧β′ ∧β′′i ∧ϕ) in which we have
renamed the variables which occur in x̄ and ȳ′ by distinct names and different from those of the
free variables, is equivalent in T to[

¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧∧
i∈I ¬(∃x̄ȳ′ α ∧ β′ ∧ β′′i ∧ ϕ)∗

]
.

Thus, the rule (4) is correct in T .

Correctness of the rule (5):

¬
[
∃x̄ α∧∧

i∈I ¬(∃ȳ′i β′i)

]
=⇒ ¬

[
∃x̄′ α′ ∧ α′′∗∧

i∈I′ ¬(∃ȳ′i β′i)

]

where the formula ∃x̄ α is not of the form ∃x̄ α1∧α2 with ∃x̄ α1 ∈ A′ and α2 ∈ A′′ and is equivalent
in T to a decomposed formula of the form ∃x̄′ α′∧ (∃x̄′′ α′′∧ (∃ε true)) with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′.
Each formula ∃ȳ′i β′i belongs to A′. I ′ is the set of the i ∈ I such that ∃ȳ′iβ′i has no occurrences
of the variables of x̄′′. Moreover, T |= (∃x̄′′α′′) ↔ α′′∗ with α′′∗ ∈ A′′.

Let us show the correctness of this rule. According to the conditions of this rule, its left hand
side is equivalent in T to

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧
i∈I

¬(∃ȳ′i β′i))),

with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′ and all the ∃ȳ′i β′i belong to A′. Let us denote by I1, the set of the
i ∈ I such that x′′n has no occurrences in ∃ȳ′iβ′i. The preceding formula is equivalent in T to

¬(∃x̄′α′ ∧ (∃x′′1...∃x′′n−1

[
(
∧

i∈I1 ¬(∃ȳ′iβ′i))∧
(∃x′′n α′′ ∧

∧
i∈I−I1 ¬(∃ȳ′iβ′i))

]
)). (3.22)

Since α′′ ∈ A′′ and ∃ȳ′iβ′i ∈ A′, then according to Property 3.1.0.4 and the conditions 2 and 3 of
Definition 3.2.1.1, the formula (3.22) is equivalent in T to

¬(∃x̄′α′ ∧ (∃x′′1...∃x′′n−1

[
(
∧

i∈I1 ¬(∃ȳ′iβ′i))∧
(∃x′′n α′′)

]
)).
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Since T |= (∃x′′n α′′) ↔ α′′n with α′′n ∈ A′′ (always possible according to the condition 3 of
Definition 3.2.1.1), then the preceding formula is equivalent in T to

¬(∃x̄′α′ ∧ (∃x′′1...∃x′′n−1((
∧
i∈I1

¬(∃ȳ′iβ′i)) ∧ α′′n))), (3.23)

thus to
¬(∃x̄′α′ ∧ (∃x′′1...∃x′′n−1 α

′′
n ∧

∧
i∈I1

¬(∃ȳ′iβ′i))). (3.24)

By repeating the four last steps (n− 1) times and by denoting by Ik the set of the i ∈ Ik−1 such
that x′′(n−k+1) has no occurrences in ∃ȳ′iβ′i, the preceding formula is equivalent in T to

¬(∃x̄′α′ ∧ α′′1 ∧
∧

i∈In
¬(∃ȳ′iβ′i)).

Thus, the rule (5) is correct in T .

Correctness of the rule (6):

¬


∃x̄ α ∧ ϕ∧

¬
[
∃ȳ′ β′ ∧ β′′∧

i∈I ¬(∃z̄′i δ′i)

]  =⇒
[
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′ ∧ β′′))∧∧

i∈I ¬(∃x̄ȳ′z̄′i α ∧ β′ ∧ β′′ ∧ δ′i ∧ ϕ)∗

]

where I 6= ∅, ∃ȳ′ β′ ∈ A′, β′′ ∈ A′′ and ∃z̄′i δ′i ∈ A′. The formula (∃x̄ȳ′z̄i α ∧ β′ ∧ β′′ ∧ δ′i ∧ ϕ)∗ is
the formula (∃x̄ȳ′z̄i α ∧ β′ ∧ β′′ ∧ δ′i ∧ ϕ) in which we have renamed the variables which occur in
x̄ and ȳ′ by distinct names and different from those of the free variables.

Let us show the correctness of this rule. Since ∃ȳ′β′ ∈ A′, then according to the second point
of Definition 3.2.1.1, we have T |= ∃?ȳ′β′, thus T |= ∃?ȳ′β′ ∧ β′′. Thus, according to Corollary
3.1.0.7, the left hand side of this rule is equivalent in T to

¬

 ∃x̄ α ∧ ϕ∧

¬
[

(∃ȳ′ β′ ∧ β′′) ∧
∧

i∈I ¬(∃ȳ′ β′ ∧ β′′ ∧ (∃z̄′i δ′i))
]  ,

i.e. to

¬

 ∃x̄ α ∧ ϕ∧

¬
[

(∃ȳ′ β′ ∧ β′′) ∧
∧

i∈I ¬(∃ȳ′z̄′i β′ ∧ β′′ ∧ δ′i)
]  ,

thus to

¬

 ∃x̄′ α ∧ ϕ∧[
(¬(∃ȳ′ β′ ∧ β′′)) ∨

∨
i∈I(∃ȳ′z̄′i β′ ∧ β′′ ∧ δ′i)

]  .
After having distributed the ∧ on the ∨ and lifted the quantifications ∃ȳ′z̄′i we get

¬
[

(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′ ∧ β′′))∨∨
i∈I(∃x̄ȳ′z̄′i α ∧ ϕ ∧ β′ ∧ β′′ ∧ δ′i)

]
,

which is equivalent in T to [
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′ ∧ β′′))∧∧

i∈I ¬(∃x̄ȳ′z̄′i α ∧ ϕ ∧ β′ ∧ β′′ ∧ δ′i)

]
,
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which, by denoting by (∃x̄ȳ′z̄′i α ∧ ϕ ∧ β′ ∧ β′′ ∧ δ′i) the formula (∃x̄ȳ′z̄′i α ∧ ϕ ∧ β′ ∧ β′′ ∧ δ′i) in
wich we have renamed the variables which occur in x̄ and ȳ′ by distinct names and different from
those of the free variables, is equivalent in T to[

¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′ ∧ β′′))∧∧
i∈I ¬(∃x̄ȳ′z̄′i α ∧ ϕ ∧ β′ ∧ β′′ ∧ δ′i)∗

]
.

Thus, the rule (6) is correct in T .
Proof, second part: every finite application of the rules on a conjunction of working formulas
produces a conjunction of solved formulas.

Let us show first that every substitution of a sub-working formula of a conjunction of working
formulas by a conjunction of working formulas produces a conjunction of working formulas. Let∧

i∈I ϕi be a conjunction of working formulas. Let ϕk, with k ∈ I, be an element of this
conjunction of depth dk. Two cases arise:

1. Either we replace ϕk by a conjunction of working formulas. Thus, let
∧

j∈Jk
φj be a con-

junction of working formulas which is equivalent to ϕk in T . The conjunction of working
formulas

∧
i∈I ϕi is equivalent in T to

(
∧

i∈I−{k}
ϕi) ∧ (

∧
j∈Jk

φj)

which is clearly a conjunction of working formulas.

2. Or, we replace a strict sub-working formula of ϕk by a conjunction of working formulas.
Thus, let φ be a sub-working formula of ϕk of depth dφ < dk (thus φ is different from ϕk).
Thus, ϕk has a sub-working formula16 of the form

¬(∃x̄α ∧ (
∧
l∈L

ψl) ∧ φ),

where L is a finite (possibly empty) set and all the ψl are working formulas. Let
∧

j∈J φj

be a conjunction of working formulas which is equivalent to φ in T . Thus, the preceding
sub-working formula of ϕk is equivalent in T to

¬(∃x̄α ∧ (
∧
l∈L

ψl) ∧ (
∧
j∈J

φj)),

which is clearly a sub-working formula. Thus, ϕk is equivalent to a working formula and
thus

∧
i∈I ϕi is equivalent to a conjunction of working formulas.

From 1 and 2 we deduce that (i) every substitution of a sub-working formula of a conjunction
of working formulas by a conjunction of working formulas produces a conjunction of working
formulas.

Since each rule transforms a working formula into a conjunction of working formulas, then
according to (i) every finite application of the rewriting rules on a conjunction of working formulas
produces a conjunction of working formulas. Let us show now that each of these final working
formulas is solved.

Let ϕ be a working formula. We have shown that every finite application of the rules on a
conjunction of working formulas produces a conjunction φ of working formulas. Suppose that the

16By considering that the set of the sub-formulas of any formula ϕ contains also the whole formula ϕ.
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rules terminate and one at least of the working formulas of φ is not solved. Let ψ this working
formula. Two cases arise
Case 1: ψ is a working formula of depth greater than 2. Thus ψ contains a sub-formula of the
form

¬

 ∃x̄ α ∧ ψ1∧

¬
[
∃ȳ β ∧

∧
i∈I ¬(∃z̄i δi)

]  ,
where ψ1 is a conjunction of working formulas, I is a finite non-empty set and α, β, and δi
belong to A. Let (∃ȳ′β′ ∧ (∃x̄′′β′′ ∧ (∃ȳ′′′β′′′))) be the decomposed formula of ∃ȳβ and let
(∃z̄′iδ′i ∧ (∃z̄′′i δ′′i ∧ (∃z̄′′′i δ′′′i ))) be the decomposed formula of ∃z̄iδi. If ∃ȳ′′′β′′′ is different from the
formula ∃εtrue then the rule (3) can be applied anymore which contradicts our suppositions.
Thus, suppose that

∃ȳ′′′β′′′ = ∃εtrue. (3.25)

If there exists k ∈ I such that ∃z̄′′′k δ′′′k is not the formula ∃εtrue, then the rule (3) can still be
applied which contradicts our suppositions. Thus, suppose that

∃z̄′′′i δ′′′i = ∃εtrue, (3.26)

for all i ∈ I. If there exists k ∈ I such that ∃z̄kβk is not of the form ∃z̄′kβ′k ∧ β′′k with ∃z̄′kβ′k ∈ A′
and β′′k ∈ A′′, then since we have (3.26), the rule (5) can still be applied which contradicts our
supposition. Suppose that

each ∃z̄iδi is of the form ∃z̄′iδ′i ∧ δ′′i with ∃z̄′iδ′i ∈ A′ and δ′′i ∈ A′′. (3.27)

If there exists i ∈ I such that δ′′i is not the formula true, then since we have (3.25), the rule (4)
can still be applied which contradicts our suppositions. Suppose that all the δ′′i ’ are of the form
true. According to (3.27) we get

all the ∃z̄iβi belong to A
′. (3.28)

If ∃ȳβ is not of the form ∃ȳ′β′ ∧ β′′ with ∃ȳ′β′ ∈ A′ and β′′ ∈ A′′, then since we have (3.25) and
(3.28), the rule (5) can still be applied which contradicts our suppositions. Thus suppose that

∃ȳβ is of the form ∃ȳ′β′ ∧ β′′ with ∃ȳ′β′ ∈ A′ et β′′ ∈ A′′. (3.29)

Since we have (3.29) and (3.28), the rule (6) can still be applied which contradicts all our
suppositions.
Case 2: ψ is a working formula of the form

∃x̄ α ∧
∧
i∈I

¬(∃ȳi βi)

and at least one of the following properties holds

1. false is a sub-formula of α,

2. there exists i ∈ I such that βi is the formula true or false,

3. there exists i ∈ I such that ∃ȳiβi 6∈ A′,

4. ∃x̄α is not of the form ∃x̄′α′ ∧ α′′ with ∃x̄′α′ ∈ A′ and α′′ ∈ A′′.
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if the condition (1) holds then the rule (2) can still be applied which contradicts our suppositions.
If the condition (2) holds then the rules (1) and (2) can still be applied which contradicts our
suppositions. If the condition (3) holds then the rules (3) or (4) or (5) (with I = ∅) can still
be applied which contradicts our suppositions. If the condition (4) holds then according to the
preceding point ∃ȳiβi ∈ A′ and thus the rule (3) or (5) can still be applied which contradicts our
suppositions.

From the cases 1 and 2, our suppositions are always false, thus ψ is a solved formula and
thus φ is a conjunction of solved formulas.
Proof, third part: Let us show that every repeated application of the preceding rules termi-
nates. The termination of the rule is intuitive and can be shown using the same functions used
in the rules of infinite-decomposable theories. Nevertheless, the new rule (4) needs a function
much more complex than the function β defined in Chapter 3. We prefer then giving a semi-
formal proof using the conditions of applications of our rules. Let ϕ be a working formula. The
rule (3) treats first the two most embedded levels of ϕ using decompositions. Then, the rule (5)
eliminates the quantifications of the x̄′′ on the last levels. Then the rule (4) removes the formulas
of A′′. After many applications of the preceding steps, the rule (6) decreases the depth of ϕ. All
these steps are repeated until reaching the conjunction of solved formulas. 2

3.3.4 The decision procedure

Having a proposition ψ, the decision of ψ in T proceeds as follows:

1. Transform the formula ψ into a normalized formula, then into a conjunction of working
formulas ϕ wnfv and equivalent to ψ in T .

2. Apply the rules on ϕ as many times as possible. At the end, we get a conjunction φ of
solved formulas.

Since the transformation of the proposition ψ into a conjunction of working formulas ϕ is wnfv,
then ϕ is a conjunction of working formulas without free variables. According to Property 3.3.3.1,
the application of our rules on ϕ produces a wnfv conjunction φ of solved formulas and thus a
conjunction φ of solved formulas without free variables. According to Property 3.3.2.4, φ is either
the formula true, or the formula

∧
i∈I ¬true. Since T is decomposable, it has at least one model

and thus either T |= φ, or T |= ¬φ and thus either T |= ψ, or T |= ¬ψ. This algorithm can
be applied on formulas having free variables and produces in this case a conjunction of solved
formulas having free variables. According to Property 3.3.2.5 we have:

Corollary 3.3.4.1 If T is zero-infinite-decomposable then every formula is equivalent in T either
to true, or to false, or to a boolean combination of formulas of the form ∃x̄′ α′∧α′′ with ∃x̄′ α′ ∈
A′, α′′ ∈ A′′ and having at least one free variable.

This corollary is another proof of the completeness of the zero-infinite-decomposable theories.

3.4 Application to the construction of trees on an ordered set Tord
3.4.1 Axiomatization

Let F be an infinite set of function symbols each one having a non-nul arity. Let R be a set of
relation symbols containing the relation symbols < and num of respective arities 2, 1. If t1 and
t2 are terms, then we write t1 < t2 for < (t1, t2). The construction of trees on an ordered set,
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denoted by Tord, is the first order theory built on the signature F ∪R and whose axioms are the
following propositions:

1 ∀x̄∀ȳ f x̄ = fȳ →
∧

i xi = yi,
2 ∀x̄∀ȳ ¬fx̄ = gȳ,
3 ∀x̄∃!z̄

∧
i zi = ti(z̄, x̄),

4 ∀xnum x→ ¬x < x,
5 ∀x∀y∀z num x ∧ num y ∧ num z → ((x < y ∧ y < z) → x < z),
6 ∀x∀y (num x ∧ num y) → (x < y ∨ x = y ∨ y < x),
7 ∀x∀y (num x ∧ num y) → (x < y → (∃z num z ∧ x < z ∧ z < y)),
8 ∀xnum x → (∃y num y ∧ x < y),
9 ∀xnum x → (∃y num y ∧ y < x),
10 ∀x̄¬num fx̄,
11 ∀x∀y x < y → (num x ∧ num y),
12 ∃xnum x,

where f and g are distinct function symbols taken from F , x, y, z variables, x̄ a vector of variables
xi, ȳ a vector of variables yi, z̄ a vector of distinct variables zi and ti(z̄, x̄) a term which begins
by an element of F followed by variables taken from x̄ or z̄.

The schemas of axiom 1, 2 and 3 are the three schemas of the theory of finite or infinite
trees: the first schema called explosion, the second one called of conflict of symbols and the third
one called of unique solution. The axioms 4, 5,..., 9 concern the relation <, seen as an ordered
relation strict 4,5, total 6, dense 7 and without endpoints 8,9. The axioms 10, 11 and 12 are
called typing axioms. The formulas num x and ¬num x are called typing constraints since they
link a type to x.

Let us present now four properties that hold in Tord. We will use them to show the zero-
infinite-decomposability of Tord. Note that the three first properties are just simple extension of
the properties 3.2.4.1, 3.2.4.2 and 3.2.4.3 yet defined in the theory Tord at section 3.2.4. The
first property introduces the full elimination of quantifiers of Fourier for the ordered elements.
The second one shows the behavior of the negation with the relation <. The third one holds
since the relation < is dense and without endpoints and introduces the notion of zero-infinite
solutions in all the models of Tord. The fourth one shows the infinity of trees in all the models
of Tord according to the axioms 1 and 2 of Tord.

Property 3.4.1.1

Tord |=
[
∃xnum x ∧

[
(
∧

i∈I x < yi ∧ num yi) ∧
(
∧

j∈J zj < x ∧ num zj)

]]
↔
∧
i∈I

∧
j∈J

(zj < yi ∧ num yi ∧ num zj).

Property 3.4.1.2

Tord |= ∀xy (¬(x < y ∧ num x ∧ num y)) ↔


¬num x∨
¬num y∨
(x = y ∧ num x ∧ num y)∨
(y < x ∧ num x ∧ num y)

 .
Property 3.4.1.3 Let M be a model of Tord, let J and K be finite sets of individuals of M and
let ϕ′(x) be the following M -formula

num x ∧ (
∧
j∈J

j < x ∧ num j) ∧ (
∧

k∈K

x < k ∧ num k).

The set of the individuals i of M such that M |= ϕ′(i) is infinite or empty.
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Property 3.4.1.4 Let M be a model of Tord and f a function symbol of non-nul arity. The set
of the individuals i of M , such that M |= ¬num i, and the set of the individuals i of M , such
that M |= ∃x i = fx, are infinite.

3.4.2 The standard model of Tord

The theory Tord has as standard model the model Aord of the finite or infinite trees with ordered
leaves, defined as follows, starting from a set D17 disjoint from F and together with a linear
dense order relation without endpoints:

Signature of Aord The signature of Aord is the same than those of Tord.

Domain of Aord The domain Aord of Aord contains finite or infinite trees built on F ∪D. Each
n-ary element of F is considered as a label of arity n and each element of D is considered as
a label of arity 0. Since all the function symbols of F have a non-nul arity, then each tree of
the domain of this model contains leaves which belong to the set D and thus all the leaves are
ordered by the linear dense order relation in D. This is why the model is called trees with ordered
leaves.

Operations of Aord To each symbol f ∈ F of arity n we link the operation of construction
fAord : Aord

n → Aord, where f(a1, . . . , an), is the tree whose root is labeled f and whose suns
are a1, . . . , an.

Relations of Aord To the relation symbol num we link the set numAord of the trees reduced to
a leaf. To the relation < we link the set of couples (x, y) such that x ∈ numAord , y ∈ numAord

and the value of x is less than the value of y.

3.4.3 Block and solved block in Tord

Definition 3.4.3.1 We call block, every conjunction α of flat formulas such that each variable
x in α, has at least one occurrence in a sub-formula of α of the form num x or ¬num x. A block
α without occurrences of the symbol “ = ” is called relational. A block α without occurrences of
the symbol “ < ” and where each variable has an occurrence in at least an equation of α is called
equational.

Example 3.4.3.2 The formula

x = fy ∧ y < z ∧ num y ∧ numz,

is not a block because the variable x has no typing constraint. The formula

x = fy ∧ y < z ∧ ¬num x ∧ num y ∧ numz,

is a block. The block
x = fy ∧ y = x ∧ ¬num x ∧ num y ∧ numz,

is not equational because the variable z does not occur in any equation of this block. The blocks
true, false and

x < y ∧ y < z ∧ num x ∧ num y ∧ numz,

are relational blocks.
17For example the set of the rational numbers.
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Definition 3.4.3.3 Let α be a block and x̄ a vector of variables. A variable u is called reachable
in ∃x̄α if u is a free variable in ∃x̄α, or α has a sub-formula of the form y = t(u)∧¬num y with
t(u) a term containing u and y a reachable variable. In the last case, the equation y = t(u) is
called reachable in ∃x̄α.

According to the axioms 1 and 2 of Tord, we have the following property

Property 3.4.3.4 Let α be a block. If all the variables of x̄ are reachable in ∃x̄ α then Tord |=
∃?x̄α.

Suppose that the variables of V are ordered by a linear dense order relation without endpoints
denoted by �.

Definition 3.4.3.5 A block α is called well-typed if it does not contain sub-formulas of the
form

• num x ∧ ¬num x,

• x = fȳ ∧ num x, with f ∈ F ,

• x = y ∧ num x ∧ ¬num y,

• x = y ∧ ¬num x ∧ num y,

• x < y ∧ ¬num x,

• y < x ∧ ¬num x.

Definition 3.4.3.6 A block α is called (�)-solved in Tord if

1. α is well-typed,

2. α does not contain sub-formulas of the form β ∧ false, where β is a formula different from
true,

3. if x = y is a sub-formula of α, then x � y,

4. all the left hand sides of the equations of α are distinct,

5. if x < y is a sub-formula of α then x and y do not occur in a left hand side of an equation
of α,

6. α does not contain sub-formulas of the form

x0 < x1 ∧ x1 < x2 ∧ ... ∧ xn−1 < xn ∧ xn < x0.

Example 3.4.3.7 Let x, y, z and w be variables such that x � y � z � w. The block

x = fy ∧ y < z ∧ num x ∧ num y ∧ numz,

is not (�)-solved because it contains a sub-formula of the form x = fy ∧ num x. The blocks true,
false and

x = fy ∧ y = z ∧ w < z ∧ ¬num x ∧ num y ∧ numz ∧ numw,

are (�)-solved.
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3.4. Application to the construction of trees on an ordered set Tord

Property 3.4.3.8 Every block is equivalent in Tord to a wnfv (�)-solved block.

Proof. To show this property, we introduce the following rewriting rules which transform each
block into a wnfv (�)-solved block equivalent in Tord. To apply the rule p1 =⇒ p2 to the block
p means to replace in p, a sub-formula p1 by the formula p2, by considering the connector ∧
associative and commutative.

(1) y = fx̄ ∧ num y =⇒ false,
(2) x < y ∧ ¬num x =⇒ false,
(3) y < x ∧ ¬num x =⇒ false,
(4) x = y ∧ num x ∧ ¬num y =⇒ false,
(5) x = y ∧ num y ∧ ¬num x =⇒ false,
(6) num x ∧ ¬num x =⇒ false,
(7) false ∧ α =⇒ false,
(8) x = fy1...ym ∧ x = gz1...zn =⇒ false,
(9) x = fy1...yn ∧ x = fz1...zn =⇒ x = fy1...yn ∧

∧
i∈1..n yi = zi,

(10) x0 < x1 ∧ ... ∧ xn−1 < xn ∧ xn < x0 =⇒ false,
(11) x = x =⇒ true,
(12) y = x =⇒ x = y,
(13) x = y ∧ x = z =⇒ x = y ∧ y = z,
(14) x = y ∧ x = fz1...zn =⇒ x = y ∧ y = fz1...zn,
(15) x = y ∧ x < z =⇒ x = y ∧ y < z,
(16) x = y ∧ z < x =⇒ x = y ∧ z < y,

where f and g are distinct elements taken from F , x, y, z are variables, x̄ is a vector of variables
and α is any formula. The rules (12),...,(16) are applied only if x � y. Let us show that every
repeated application of these rules on a block terminates, keeps the equivalence in Tord and
produces wnfv (�)-solved block equivalent in Tord.
Proof, first part: The application of the rules terminates. Since the variables which occur in
our formulas are ordered by the relation �, we can number them by positive integers such that
x � y ↔ no(x) > no(y), where no(x) is the number linked to the variable x. Let us consider the
4-tuple (n1, n2, n3, n4) where the ni are the following non-negative integer:

• n1 is the number of sub-formulas of the form x = fy1...yn, with f ∈ F ,

• n2 is the number of occurrences of atomic formulas.

• n3 is the sum of the no(x) for each occurrence of a variable x,

• n4 is the number of formulas of the form x = y, with y � x.

to each rule, there exists a row i such that the application of this rule decreases or does not
change the values of the nj with 1 ≤ j < i, and decreases the value of ni. The row i is equal
to: 1 for the rule (1), 2 for the rules (2), . . . , (7), 1 for the rules (8) and (9), 2 for the rule
(10), 3 for the rule (11), 4 for the rule (12) and 3 for the rules (13), (14), (15) and (16). To
each sequence of formulas obtained by finite application of our rules, we can link a series of
4-tuples (n1, n2, n3, n4) which is strictly decreasing in the lexicographic order. Since These ni’s
are positive integers, they can not be negative, thus this series is finite and thus the application
of the rules terminates.
Proof, second part: The rules keep the equivalence in Tord. The rule (1) keeps the equivalence
in Tord according to axiom 10 and the properties of the equality. The rules (2) and (3) keep the

71



Chapter 3. Zero-infinite-decomposable theory

equivalence in Tord according to axiom 11. The rules (4) and (5) keep the equivalence in Tord

according to the properties of the equality. The rules (6) and (7) are evident in Tord. The rule
(8) keeps the equivalence in Tord according to axiom 2. The rule (9) keeps the equivalence in Tord

according to axiom 1. The rule (10) keeps the equivalence in Tord according to axioms 4 and 5.
The rules (11),. . . ,(16) keep the equivalence in Tord according to the properties of the equality.
Proof, third part: The application of the rules terminates by a (�)-solved block. Suppose
that the application of the rules on a block φ terminates by a formula ϕ which is not a (�)-solved
block. According to Definition 3.4.3.6, either ϕ is not a block, or ϕ is a block and one of the six
conditions of Definition 3.4.3.6 does not hold. If ϕ is not a block, then there exists a variable
x of ϕ such that num x or ¬num x is not a sub-formula of ϕ. Since each rule produces a wnfv
conjunction of atomic formulas starting from a conjunction of atomic formulas and since φ is
a block, and the only rule which removes the typing constraints is the rule 7 which can not be
applied any more according to our suppositions, then ϕ is the formula false, which contradicts
our supposition (ϕ is not a block). Suppose now that ϕ is a block and at least one of the six
conditions of Definition 3.4.3.6 does not hold. According to which conditions 1, 2, 3, 4, 5, 6 does
not hold, one at least of the following rules can still be applied (1),(2),(3),(4),(5),(6) or (7) or
(11),(12) or (8),(9),(13),(14) or (15),(16) or (10), which contradicts our supposition. 2

According to axiom 3 of Tord, we have the following property

Property 3.4.3.9 Let α be an equational (�)-solved block different from the formula false. Let
x̄ be the set of the variables which occur in a left hand side of an equation of α. Let α∗ be the
conjunction of typing constraints of the variables of α which do not belong to x̄. We have

Tord |= α∗ → ∃!x̄ α.

Example 3.4.3.10 Let x, y and z be variables such that x � y � z and let α be the block
x = fy ∧ y = z ∧ ¬num x ∧ num y ∧ numz. We have

Tord |= num z → (∃!xy x = fy ∧ y = z ∧ ¬num x ∧ num y ∧ numz).

3.4.4 Tord is zero-infinite-decomposable

Theorem 3.4.4.1 The theory Tord is zero-infinite-decomposable.

Proof. Let us show that Tord satisfies the conditions of Definition 3.2.1.1.

Choice of the sets Ψ(u), A, A′ and A′′

Let BR be the set of the blocks. The sets Ψ(u), A, A′ and A′′ are chosen as follows:

• Ψ(u) contains the set of formulas of the form ∃ȳ u = fȳ with f ∈ F ,

• A is the set BR,

• A′ is the set of formulas of the form ∃x̄′α′, where

– α′ is an equational (�)-solved block different from the formula false and where the
order � is such that all the variables of x̄′ are greater than the free variables of ∃x̄′α′,

– all the equations of α′ and all the variables of x̄′ are reachable in ∃x̄′α′

• A′′ is the set of the (�)-solved relational blocks which are different from the formula false.

It is clear that BR is closed for the conjunction, A′ contains formulas of the form ∃x̄′α′ with
α′ ∈ BR and A′′ is a sub-set of BR.

Let us show that Tord satisfies the five conditions of Definition 3.2.1.1.
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Tord satisfies the first condition of Definition 3.2.1.1

Let us show that every formula of the form ∃xα∧ψ, with α ∈ A and ψ any formula, is equivalent
in Tord to a formula, wnfv, of the form

∃x′ α′ ∧ (∃x′′ α′′ ∧ (∃x′′′ α′′′ ∧ ψ))), (3.30)

with ∃x′α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A and Tord |= ∀x̄′′ α′′ → ∃!x̄′′′α′′′.
Let us choose the order � such that all the variables of x̄ are greater than the free variables

of ∃x̄α. Let β be a (�)-solved formula equivalent to α in Tord, ( β exists according Property
3.4.3.8). Let X be the set of the variables of x̄. Let Yac be the set of the reachable variables in
∃x̄β. Let mbg be the set of the variables which occur in a left hand side of an equation of β. If
β is equivalent to false in Tord, then the formula ∃xα ∧ ψ is equivalent in Tord to a decomposed
formula of the form

∃ε false ∧ (∃ε true ∧ (∃ε true ∧ ψ)).

Else, β is a (�)-solved conjunction of flat equations and relations. The formula ∃xα ∧ ψ is
equivalent in Tord to a decomposed formula of the form (3.30) where:
− x̄′ contains the elements of X ∩ Yac,
− x̄′′ contains the elements of (X − Yac)−mbg.
− x̄′′′ contains the elements of (X − Yac) ∩mbg.
− α′ is of the form α′1 ∧ α′2 where α′1 is the conjunction of all the reachable equations in ∃x̄β,
and where α′2 is the conjunction of all the sub-formulas of β of the form num x or ¬num x with
x having at least an occurrence in α′1.
− α′′ is of the form α′′1 ∧α′′2 where α′′1 is the conjunction of all the sub-formulas of β of the form
num x or ¬num x with x 6∈ x̄′′′, and where α′′2 is the conjunction of all the sub-formulas of β of
the form x < y.
− α′′′ is of the form α′′′1 ∧ α′′′2 where α′′′1 is the conjunction of all the equations which are not
reachable in ∃x̄β, and where α′′′2 is the conjunction of all the sub-formulas of β of the form num x
or ¬num x with x having at least an occurrence in α′′′1 .

According to our construction, it is clear that ∃x̄′α′ ∈ A′, α′′ ∈ A′′ and α′′′ ∈ A. Moreover,
according to Property 3.4.3.9 we have Tord |= ∀x̄′′α′′ → ∃!x̄′′′α′′′. Let us show now that (3.30) and
∃x̄α∧ψ are equivalents in Tord. Let X ′, X ′′ and X ′′′ be the sets of the variables of the vectors18

of x̄′, x̄′′ and x̄′′′. If β is the formula false then the equivalence of the decomposition is evident.
Else, β is a (�)-solved block which does not contain the sub-formula false. Thus, according to
our construction we have: X = X ′ ∪X ′′ ∪X ′′′, X ′ ∩X ′′ = ∅, X ′ ∩X ′′′ = ∅, X ′′ ∩X ′′′ = ∅, for all
x′′i ∈ X ′′ we have x′′i 6∈ var(α′) and for all x′′′i ∈ X ′′′ we have x′′′i 6∈ var(α′∧α′′). These properties
come from the definition of (�)-solved block and the order � which has been chosen such that
the quantified variables of ∃x̄ α are greater than the free variables of ∃x̄ α. On the other hand,
each equation and each relation of β occurs in α′ ∧α′′ ∧α′′′ and each equation and each relation
of α′ ∧ α′′ ∧ α′′′ occurs in β and thus Tord |= β ↔ (α′ ∧ α′′ ∧ α′′′). We have shown that the
quantifications are coherent and the equivalence Tord |= β ↔ α′ ∧ α′′ ∧ α′′′ holds. According to
Property 3.4.3.8, we have Tord |= α ↔ β and thus the decomposition keeps the equivalence in
Tord.

Tord satisfies the second condition of Definition 3.2.1.1

Let us show that if ∃x̄′α′ ∈ A′ then Tord |= ∃?x̄′α′. Since ∃x̄′α′ ∈ A′ and according to the
choice of the set A′, all the variables of x̄′ are reachable in ∃x̄′α′. Using Property 3.4.3.4 we get

18Of course, if x̄ = ε then X = ∅
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Tord |= ∃?x̄′α′.
Let us show now that if y is a free variable in ∃x̄′α′ then Tord |= ∃?yx̄′ α′, or there exists

ψ(u) ∈ Ψ(u) with Tord |= ∀y (∃x̄′ α′) → ψ(y). Let y be a free variable of ∃x̄′α′. Three cases arise:
Either, y occurs in a sub-formula of α′ of the form y = t(x̄′, z̄′, y), where z̄′ is the set of the

free variables of ∃x̄′α′, from which we have removed the variable y, and where t(x̄′, z̄′, y) is a
term which begins by an element of F followed by variables taken from x̄′ or z̄′ or {y}. In this
case, the formula ∃x̄′α′ implies in Tord the formula ∃x̄′ y = t(x̄′, z̄′, y), which implies in Tord the
formula ∃x̄′z̄′w y = t(x̄′, z̄′, w), where y = t(x̄′, z̄′, w) is the formula y = t(x̄′, z̄′, y) in which we
have replaced every free occurrence of y in the term t(x̄′, z̄′, y) by the variable w. According to
the choice of the set Ψ(u), the formula ∃x̄′z̄′wu = t(x̄′, z̄′, w) belongs to Ψ(u).

Or, y occurs in a sub-formula of α′, of the form y = z. According to the choice of the set
A′, the order � is such that the variables of x̄′ are greater than the free variables of ∃x̄′α′. On
the other hand, according to Definition 3.4.3.6 of the (�)-solved formulas, we have y � z. Thus,
z is a free variable in ∃x̄′α′. Since y does not occur in another left hand side of an equation of
α′ (because α′ is (�)-solved), and since all the variables of x̄ are reachable in ∃x̄′α′, then all the
variables of x̄′ remain reachable in ∃x̄′y α′ and for each value of z there exists at most a value
for y. According to Property 3.4.3.4 we have Tord |= ∃?x̄′y α′.

Or, y occurs only in right hand sides of the equations of α′. According to the choice of the
set A′, all the variables of x̄′ and all the equations of α′ are reachable in ∃x̄′α′. Since y does not
occur in left hand sides of equations of α′, then the variable y as well as the variables of x̄′ are
reachable in ∃x̄′y α′. Using Property 3.4.3.4 we have Tord |= ∃?x̄′y α′.

In all the cases, Tord satisfies the second condition of Definition 3.2.1.1.

Tord satisfies the third condition of Definition 3.2.1.1

Let us show that Tord satisfies the three points of the third condition of Definition 3.2.1.1.

Tord satisfies the first point of the third condition of Definition 3.2.1.1

Let us show first that if α′′ ∈ A′′ then the formula ¬α′′ is equivalent in Tord to a disjunction of
elements of A, i.e. to a disjunction of blocks. Let α′′ be a formula of A′′. According to the choice
of the set A′′, α′′ is of the form[

(
∧

`∈L num z`) ∧ (
∧

k∈K ¬num vk)∧∧
i∈I

∧
j∈Ji

(xi < yij ∧ num xi ∧ num yij)

]
.

Thus, the formula ¬α′′ is equivalent in Tord to[
(
∨

`∈L ¬num z`) ∨ (
∨

k∈K ¬¬num vk)∨∨
i∈I

∨
j∈Ji

¬(xi < yij ∧ num xi ∧ num yij)

]
,

which according to Property 3.4.1.2 is equivalent in Tord to
(
∨

`∈L ¬num z`) ∨ (
∨

k∈K numvk)∨

∨
i∈I

∨
j∈Ji


(¬num yij)∨
(¬num xi)∨
(yij < xi ∧ num xi ∧ num yij)∨
(xi = yij ∧ num xi ∧ num yij))



 ,

which is a disjunction of blocks.

74



3.4. Application to the construction of trees on an ordered set Tord

Tord satisfies the second point of the third condition of Definition 3.2.1.1

Let us show now that if α′′ ∈ A′′ then, for all variable x′′, the formula ∃x′′α′′ is equivalent in
Tord to an element of A′′. Let α′′ be a formula of A′′, three cases arise:

Either, x′′ has no occurrences in α′′. Thus, the formula ∃x′′ α′′ is equivalent in Tord to α′′

which belongs to A′′.
Or, the formula ∃x′′ α′′ is of the form ∃x′′ α′′1 ∧ ¬num x′′ with α′′1 ∈ A′′ and x′′ has no

occurrences in α′′1. Thus, it is equivalent in Tord to α′′1 ∧ (∃x′′ ¬num x′′), which according to
Property 3.4.1.4, is equivalent in Tord to α′′1, which belongs to A′′.

Or, the formula ∃x′′ α′′ is of the form

∃x′′ α′′1 ∧ num x′′ ∧
[
(
∧

i∈I x
′′ < yi ∧ num yi)∧

(
∧

j∈J zj < x′′ ∧ num zj),

]
,

with α′′1 ∈ A′′ and x′′ has no occurrences in α′′1. Thus, it is equivalent in Tord to

α′′1 ∧ (∃x′′ num x′′ ∧
[
(
∧

i∈I x
′′ < yi ∧ num yi)∧

(
∧

j∈J zj < x′′ ∧ num zj),

]
),

which according to Property 3.4.1.1, is equivalent in Tord to

α′′1 ∧
∧

i∈I

∧
j∈J(zj < yi ∧ num yi ∧ num zj),

which belongs to A′′.

Tord satisfies the third point of the third condition of Definition 3.2.1.1

Let us show that for each variable x, we have Tord |= ∃Ψ(u)
o∞ xϕ(x). Let M be a model of Tord and

∃xϕ′(x) an instantiation of ∃x̄ ϕ(x) by individuals of M such that M |= ∃xϕ′(x). Let us show
that there exists an infinite set of individuals i of M which satisfy

M |= ϕ′(i) ∧ ¬ψ1(i) ∧ · · · ∧ ¬ψn(i),

with all the ψj(u) ∈ Ψ(u). This condition can be replaced by the following stronger condition

M |=
(

num i ∨
ψn+1(i)

)
∧ ϕ′(i) ∧ ¬ψ1(i) ∧ · · ∧¬ψn(i),

where ψn+1(u) belongs to Ψ(u) and has been chosen distinct from ψ1(u), . . . , ψn(u), because the
set F of the function symbols in infinite. Since for all k between 1 and n, we have

Tord |= num x→ ¬ψk(x), (axiom 10)

and
Tord |= ψn+1(x) → ¬ψk(x), (axiom 2)

then the preceding condition is simplified to

M |= (num i ∧ ϕ′(i)) ∨ (ψn+1(i) ∧ ϕ′(i)),

and thus knowing M |= ∃xϕ′(x), it is enough to show that there exists an infinite set of individ-
uals i of M such that

M |= num i ∧ ϕ′(i) or M |= ψn+1(i) ∧ ϕ′(i). (3.31)
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Two cases arise:
Either, the formula num x occurs in ϕ′(x). Since ϕ′(x) is an instantiation of a solved relational

block and M |= ∃xϕ′(x), the formula num x ∧ ϕ′(x) is equivalent in M to an M -formula of the
form

num x ∧ (
∧
j∈J

j < x ∧ num j) ∧ (
∧

k∈K

x < k ∧ num k).

according to Property 3.4.1.3 and since M |= ∃xnum x ∧ ϕ′(x), then there exists an infinity of
individuals i of M such that M |= num i ∧ ϕ′(i) and thus such that (3.31).

Or, the formula num x does not occur in ϕ′(x). Since ϕ′(x) is an instantiation of a solved
relational block and M |= ∃xϕ′(x), theM -formula ψn+1(x)∧ϕ′(x) is equivalent inM to ψn+1(x).
According to Property 3.4.1.4, there exists an infinity of individuals i of M such that M |=
ψn+1(i), thus such that M |= ψn+1(i) ∧ ϕ′(i) and thus such that (3.31).

In all the cases, Tord satisfies the third condition of Definition 3.2.1.1.

Tord satisfies the fourth condition of Definition 3.2.1.1

Let us show that every conjunction of flat formulas ϕ is equivalent in Tord to a disjunction of
blocks. For that, it is enough to show that every flat formula is equivalent in Tord to a disjunction
of blocks. Let ϕ be a flat formula. If it is of the form true, false or num x then ϕ is a block. Else,
the following equivalences after distribution of the ∧ on the ∨ give the needed combinations:

Tord |= x0 =x1 ↔ x0 = x1 ∧
[
(num x0 ∨ ¬num x0)∧
(num x1 ∨ ¬num x1)

]

Tord |= x0<x1 ↔x0 < x1 ∧
[
(num x0 ∨ ¬num x0)∧
(num x1 ∨ ¬num x1)

]

Tord |= x0 =fx1...xn ↔
[
x0 = fx1...xn∧∧

i∈0..n(num xi ∨ ¬num xi)

]
.

Tord satisfies the fifth condition

Let us show that for every formula without free variables of the form ∃x̄′α′ ∧α′′ with ∃x̄′α′ ∈ A′
and α′′ ∈ A′′ we have x̄ = ε, α′ ∈ {true, false} and α′′ ∈ {true, false}. Since the formula
∃x̄′α′ ∧ α′′ does not contain free variables, then there exists neither reachable variables nor
reachable equations in ∃x̄′α′ ∧α′′. Thus, according to the choice of the set A′, the formula ∃x̄′α′
is of the form ∃εtrue. On the other hand, according to the choice of the set A′′, the formula
true is the only one which belongs to A′′ and has no free variables. Thus, Tord satisfies the fifth
condition of Definition 3.2.1.1.

We have shown that Tord satisfies the five conditions of Definition 3.2.1.1. Thus, Tord is
zero-infinite-decomposable.

3.4.5 Solving first order propositions in Tord

Let us solve in Tord the following proposition ϕ1:

¬(∃y∀xv∃z y = fz ∧ y = fx ∧ v < z ∧ ¬num y ∧ num z). (3.32)

Note that the variables x and v are not typed. This formula is true in Tord because the variables
x and v are universally quantified which contradicts the fact that v < z. Let us use our algorithm
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to solve this proposition. Let us transform first the formula (3.32) into a normalized formula
equivalent in Tord using Property 3.3.1.2. Thus, the formula (3.32) is equivalent in Tord to the
following normalized formula

¬

 ∃y true∧

¬
[
∃xv true∧
¬(∃z y = fz ∧ y = fx ∧ v < z ∧ ¬num y ∧ num z)

]  .
Let us transform now this formula into a conjunction of working formulas using Property 3.3.2.2.
The preceding formula is equivalent in Tord to the following working formula

¬



∃y true∧

¬



∃xv true∧
¬(∃z1 y = fz1 ∧ y = fx ∧ v < z1 ∧ ¬num x ∧ ¬num y ∧ num z1 ∧ ¬num v)
∧
¬(∃z2 y = fz2 ∧ y = fx ∧ v < z2 ∧ ¬num x ∧ ¬num y ∧ num z2 ∧ num v)
∧
¬(∃z3 y = fz3 ∧ y = fx ∧ v < z3 ∧ num x ∧ ¬num y ∧ num z3 ∧ ¬num v)
∧
¬(∃z4 y = fz4 ∧ y = fx ∧ v < z4 ∧ num x ∧ ¬num y ∧ num z4 ∧ num v)




.

(3.33)
The three blocks:

• ∃z1 y = fz1 ∧ y = fx ∧ v < z1 ∧ ¬num x ∧ ¬num y ∧ num z1 ∧ ¬num v,

• ∃z2 y = fz2 ∧ y = fx ∧ v < z2 ∧ ¬num x ∧ ¬num y ∧ num z2 ∧ num v,

• ∃z3 y = fz3 ∧ y = fx ∧ v < z3 ∧ num x ∧ ¬num y ∧ num z3 ∧ ¬num v,

are equivalents in Tord to the (�)-solved block false. We can then apply the rule (5) with I = ∅
three times on the formula (3.33). Thus, it is equivalent in Tord to

¬



∃y true∧

¬



∃xv true∧
¬(∃z1 false)
∧
¬(∃z2 false)
∧
¬(∃z3 false)
∧
¬(∃z4 y = fz4 ∧ y = fx ∧ v < z4 ∧ num x ∧ ¬num y ∧ num z4 ∧ num v)




,

which after application of the rule (2) three times is equivalent in Tord to

¬

 ∃y true∧

¬
[
∃xv true∧
¬(∃z4 y = fz4 ∧ y = fx ∧ v < z4 ∧ num x ∧ ¬num y ∧ num z4 ∧ num v)

]  . (3.34)

Let us now treat the sub-formula

∃z4 y = fz4 ∧ y = fx ∧ v < z4 ∧ num x ∧ ¬num y ∧ num z4 ∧ num v. (3.35)
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Let us choose the order � such that z4 � x � y � v. According to Property 3.4.3.8, the block

y = fz4 ∧ y = fx ∧ v < z4 ∧ num x ∧ ¬num y ∧ num z4 ∧ num v,

is equivalent in Tord to the (�)-solved block

y = fz4 ∧ z4 = x ∧ v < x ∧ num x ∧ ¬num y ∧ num z4 ∧ num v.

thus, the formula (3.35) is equivalent in Tord to the decomposed formula ∃z4 y = fz4 ∧ z4 = x ∧ num x ∧ ¬num y ∧ num z4∧
(∃ε v < x ∧ num x ∧ num v∧
(∃ε true))

 .
Thus, we can apply the rule (5) on the formula (3.34) with I = ∅. The formula (3.34) is equivalent
in Tord to

¬


∃y true∧

¬

 ∃xv true∧

¬
[
∃z4 y = fz4 ∧ z4 = x ∧ num x ∧ ¬num y ∧ num z4∧
(v < x ∧ num x ∧ num v)

] 
 .

Note that the sub-formula (v < x ∧ num x ∧ num v) represents the formula α′′∗ in the rule (5).
Since

• (∃z4 y = fz4 ∧ z4 = x ∧ num x ∧ ¬num y ∧ num z4) ∈ A′,

• (v < x ∧ num x ∧ num v) ∈ A′′,

• Tord |= ¬(v < x ∧ num x ∧ num v) ↔


(x < v ∧ num x ∧ num v)∨
(v = x ∧ num x ∧ num v)∨
¬num x∨
¬num v


then we can apply the rule (4). The preceding formula is thus equivalent in Tord to

¬



∃y true∧

¬
[
∃xv true∧
¬(∃z4 y = fz4 ∧ z4 = x ∧ num x ∧ ¬num y ∧ num z4)

]
∧
¬
[
∃x1v1z5 y = fz5 ∧ z5 = x1 ∧ ¬num y ∧ num z5 ∧ x1 < v1 ∧ num x1 ∧ num v1

]
∧
¬
[
∃x2v2z6 y = fz6 ∧ z6 = x2 ∧ ¬num y ∧ num z6 ∧ v2 = x2 ∧ num x2 ∧ num v2

]
∧
¬
[
∃x3v3z7 y = fz7 ∧ z7 = x3 ∧ num x3 ∧ ¬num y ∧ num z7 ∧ ¬num v3

]
∧
¬
[
∃x4v4z8, y = fz8 ∧ z8 = x4 ∧ num x4 ∧ ¬num y ∧ num z8 ∧ ¬num x4

]



,

which, since the last sub-working-formula is equivalent to the (�)-solved formula false (because
we have num x4∧¬num x4) and after application of the rules (5) and (2) with I = ∅, is equivalent
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in Tord to

¬



∃y true∧

¬
[
∃xv true∧
¬(∃z4 y = fz4 ∧ z4 = x ∧ num x ∧ ¬num y ∧ num z4)

]
∧
¬
[
∃x1v1z5 y = fz5 ∧ z5 = x1 ∧ ¬num y ∧ num z5 ∧ x1 < v1 ∧ num x1 ∧ num v1

]
∧
¬
[
∃x2v2z6 y = fz6 ∧ z6 = x2 ∧ ¬num y ∧ num z6 ∧ v2 = x2 ∧ num x2 ∧ num v2

]
∧
¬
[
∃x3v3z7 y = fz5 ∧ z7 = x3 ∧ num x3 ∧ ¬num y ∧ num z7 ∧ ¬num v3

]



.

(3.36)
Since the formula ∃xv true is equivalent to the decomposed formula ∃ε true∧(∃xv true∧(∃ε true))
and (∃z4 y = fz4 ∧ z4 = x∧ num x∧¬num y ∧ num z4) ∈ A′ then we can apply the rule (5) with
I = ¬(∃z4 y = fz4 ∧ z4 = x ∧ num x ∧ ¬num y ∧ num z4). The formula (3.36) is thus equivalent
in Tord to

¬



∃y true∧
¬
[
∃ε true

]
∧
¬
[
∃x1v1z5 y = fz5 ∧ z5 = x1 ∧ ¬num y ∧ num z5 ∧ x1 < v1 ∧ num x1 ∧ num v1

]
∧
¬
[
∃x2v2z6 y = fz6 ∧ z6 = x2 ∧ ¬num y ∧ num z6 ∧ v2 = x2 ∧ num x2 ∧ num v2

]
∧
¬
[
∃x3v3z7 y = fz7 ∧ z7 = x3 ∧ num x3 ∧ ¬num y ∧ num z7 ∧ ¬num v3

]


,

(3.37)
which after application of the rule (1) is equivalent to true in Tord. Thus, ϕ1 is true in Tord.

3.5 Discussion and partial conclusion

We have presented in this chapter the class of the zero-infinite-decomposable theories, which is an
extension of the infinite-decomposable theories, by replacing the infinite quantifier by the zero-
infinite quantifier. We have also given a property that links the infinite-decomposable theories
with the zero-infinite-decomposable theories and have shown that the theories Tord and Tord are
zero-infinite-decomposable and thus complete.

The decision procedure defined in this chapter contains a new rule comparing with those of
the infinite-decomposable theories, which associates a particular treatment to the formulas of
the form ¬(∃x̄′ α′ ∧ α′′) with ∃x̄′ α′ ∈ A′ and α′′ ∈ A′′. This decision procedure as well as those
defined in Chapter 2, is a proposition decision algorithm which for every proposition gives either
true or false. It can also be applied to formulas having at least one free variable and gives in
this case a conjunction φ of solved formulas easily transformable into a boolean combination of
basic formulas. Unfortunately, it does not warrant that the formula φ is neither true nor false if
it contains at least one free variables and is not able to present the solutions of the free variables
in a clear and explicit way.

On the other hand, by introducing the theory Tord we have felt the first intuitions of the
combination of any first order theory T with the theory of finite or infinite trees. It will be
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very interesting to define an automatic way to combine any first order theory T with the theory
of finite or infinite trees and show the completeness of this new hybrid theory using the zero-
infinite-decomposable theories. This will be our goal in Chapter 4 !
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We present in this chapter an automatic way to combine any first order theory T with the
theory of finite or infinite trees. One of the major difficulties in this combination resides in the
fact that the theory T and the theory of finite or infinite trees can have non-disjoint signatures,
i.e. there exists at least a function symbol having two completely different behaviors whether we
are in the theory of finite or infinite trees or in the theory T . Thus, we must first find a semantic
meaning to this combination, then give a harmonious axiomatization of this melange. For that,
we define semantically this combination as an extension into trees of the elements of the models
of the theory T . Then, the axiomatization of the extension into trees of T , denoted by T ∗, is
made essentially from the three axioms of Michael Maher of the theory of finite or infinite trees
[33] and from the axiomatization of the theory T by introducing typing constraints. We also
present the standard model M∗ of the theory T ∗ using the standard model M of T . To show the
completeness of the theory T ∗, we introduce a new class of theories that we call flexible and show
that if T is a flexible theory, then its extension into trees, i.e. T ∗, is zero-infinite-decomposable
and thus complete. The flexible theories are theories having elegant properties which enable us
to handle easily the first order formulas. We end this chapter by an application to the extension
into trees T ∗ad of the theory Tad of ordered additive rational numbers. We show that Tad is flexible
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and thus T ∗ad is complete. Note that the results presented in this chapter have been published in
[15], [20].

4.1 Extension into trees T ∗ of T

Since we will handle theories with different signatures S and S∗, then we will add to the words:
equation, relation, term, formula, model and theory the prefixes S or S∗ whether we are in the
signature S or S∗. An S-term for example is a term built on the signature S while an S∗-term
is a term built on the signature S∗. More details are available in Chapter 1.

4.1.1 Axiomatization of T ∗

Let us recall first the three axioms of the theory of finite or infinite trees. Let S be a signature
containing only an infinite set F of function symbols. The axiomatization of the S-theory of
finite or infinite trees consists in the set of the following S-propositions:

1 ∀x̄∀ȳ f x̄ = fȳ →
∧

i xi = yi,
2 ∀x̄∀ȳ ¬fx̄ = gȳ,
3 ∀x̄∃!z̄

∧
i zi = ti(z̄, x̄),

with f and g two distinct function symbols taken from F , x, y, z variables, x̄ a vector of variables
xi, ȳ a vector of variables yi, z̄ a vector of distinct variables zi and ti(x̄, z̄) an S-term which begins
by an element of F followed by variables taken from x̄ or z̄.

Let us fix now a signature S containing a set F of function symbols and a set R of relation
symbols, as well as a signature S∗ containing:

• an infinite set F ∗ = F ∪ FA where FA is an infinite set of function symbols, each one of
non-nul arity, and disjoint from F .

• a set R∗ = R ∪ {p} of relation symbols, containing R, as well as a relation symbol p of
arity 1.

Let T be an S-theory. The extension into trees of the S-theory T is the S∗-theory T ∗ whose
axioms are the infinite set of the following S∗-propositions, with x̄ a vector of variables xi and ȳ
a vector of variables yi:

1. Explosion: for all f ∈ F ∗ :

∀x̄∀ȳ ¬pfx̄ ∧ ¬pfȳ ∧ fx̄ = fȳ →
∧
i

xi = yi

2. Conflict of symbols: Let f and g be two distinct function symbols taken from F ∗:

∀x̄∀ȳ f x̄ = gȳ → pfx̄ ∧ pgȳ

3. Unique solution

∀x̄∀ȳ (
∧
i

pxi) ∧ (
∧
j

¬pyj) → ∃!z̄
∧
k

(¬pzi ∧ zk = tk(x̄, ȳ, z̄))

where z̄ is a vector of distinct variables zi, tk(x̄, ȳ, z̄) an S∗-term which begins by a function
symbol fk ∈ F ∗ followed by variables taken from x̄, ȳ, z̄, moreover, if fk ∈ F , then the S∗-
term tk(x̄, ȳ, z̄) contains at least a variable from ȳ or z̄
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4. Relations of R: for all r ∈ R,
∀x̄ rx̄→

∧
i

pxi

5. Operations of F : for all f ∈ F ,
∀x̄ pfx̄↔

∧
i

pxi

(if f is 0-ary then this axiom is written pf)

6. Elements not in T : for all f ∈ F ∗ − F ,

∀x̄ ¬pfx̄

7. Existence of an element satisfying p (only if F does not contain 0-ary function symbols):

∃x px,

8. Extension into trees of the axioms of T : all axioms obtained by the following transforma-
tions of each axiom ϕ of T : While it is possible replace all sub-formula of ϕ which is of the
form ∃x̄ ψ, but not of the form ∃x̄ (

∧
pxi)∧ψ′, by ∃x̄ (

∧
pxi)∧ψ and every sub-formula of

ϕ which is of the form ∀x̄ ψ, but not of the form ∀x̄ (
∧

pxi) → ψ′, by ∀x̄ (
∧

pxi) → ψ.

4.1.2 The standard model M∗ of T ∗

Let M = (M,F ,R) be an S-model of an S-theory T with F a set of functions in M subscripted
by the elements of F and R a set of relations in M subscripted by the elements of R.

Let M∗ = (M∗,F∗,R∗) be an S∗-model with F∗ an infinite set of functions subscripted by
the elements of F ∗ and containing the set F , and R∗ = R ∪ {p} a set of relations subscripted
by the elements of R∗ and containing the set R as well as an 1-ary relation p.

The extension into trees T ∗ of the S-theory T has as standard model the extension into trees
of the S-model M , i.e. the S∗-model M∗ = (M∗,F∗,R∗) defined as follows19 :

Domain of M∗ : The domain M∗ is the set of the finite or infinite trees labeled by F ∗ ∪M
by considering each n-ary symbol in F ∗ as a label of arity n and each individual of M as a label
of arity 0 and such that each sub-tree labeled by F ∪M is evaluated in M and reduced to a leaf
labeled by an element of M. Since F ∗ does not contain function symbols of arity 0 then all the
leaves of any tree a taken from M∗ belong to M. We understand now the semantic meaning of
an extension into trees of any theory T which is finally nothing else a construction of trees on
the individuals of each model Mi of T without creating new leaves that does not belong to M〉.

Operations of M∗ : To each n-ary function symbol f in F ∗ is associated the application
fM∗

: M∗n → M∗ such that f(a1, .., an) is the result of f on (a1, .., an) in M, if f ∈ F and
ai ∈M for all i ∈ {1, ..., n}, and is the tree whose root is labeled f and whose suns are (a1, .., an)
else.

Relations of M∗ : To each n-ary relation symbol r of R∗−{p} is associated the set rM∗
= rM .

To the relation symbol p is associated the set pM∗
= M.

19By denoting by (fM∗
)f∈F∗ and (rM∗

)r∈R∗ for F∗ respectively R∗.
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4.1.3 Examples

Extension into trees of the empty theory

Let S = ∅ be an empty signature and T be the S-empty theory. This empty theory has as model
every non-empty set without any other restrictions. Let S∗ = F ∗ ∪ {p} be a signature such that
F ∗ is an infinite set of function symbols, each one having a non-nul arity, and p a relation symbol
of arity 1. The extension into trees of T is the S∗-theory T ∗ whose set of axioms is the set of
the following propositions:

1. Explosion: for all f ∈ F ∗ :

∀x̄∀ȳ ¬pfx̄ ∧ ¬pfȳ ∧ fx̄ = fȳ →
∧
i

xi = yi

2. Conflict of symbols: Let f and g be two distinct function symbols taken from F ∗:

∀x̄∀ȳ f x̄ = gȳ → pfx̄ ∧ pgȳ

3. Unique solution

∀x̄∀ȳ (
∧
i

pxi) ∧ (
∧
j

¬pyj) → ∃!z̄
∧
k

(¬pzi ∧ zk = tk(x̄, ȳ, z̄))

where z̄ is a vector of distinct variables zi, tk(x̄, ȳ, z̄) an S∗-term which begins by a function
symbol fk ∈ F ∗ followed by variables taken from x̄, ȳ, z̄,

4. Elements not in T : for all f ∈ F ∗,
∀x̄ ¬pfx̄

5. Existence of an element satisfying p :

∃x px.

We can simplify this axiomatization using Axiom 4. We will also replace the relation symbol p
by leaf in order to clarify the intuitions of the our axiomatization. Thus, we get the following
axiomatization:

1. Explosion: for all f ∈ F ∗ :
∀x̄∀ȳ f x̄ = fȳ →

∧
i

xi = yi

2. Conflict of symbols: Let f and g be two distinct function symbols taken from F ∗ :

∀x̄∀ȳ f x̄ = gȳ

3. Unique solution
∀x̄∃!z̄

∧
k

zk = tk(x̄, z̄)

where z̄ is a vector of distinct variables zi, tk(x̄, z̄) an S∗-term which begins by a function
symbol fk ∈ F ∗ followed by variables taken from x̄ or z̄,
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4. Elements not in T : for all f ∈ F ∗,

∀x̄ ¬leaf fx̄

5. Existence of an element satisfying leaf :

∃x leaf x.

This axiomatization is the axiomatization of the theory of finite or infinite trees of M. Maher
[33], built on the set F ∗ and increased by the relation symbol leaf of arity 1 which distinguishes
the leaves from the other trees. Nevertheless, this axiomatization forces each models of T ∗ to
contain at least a tree reduced to a leaf. This small restriction is due to the fact that according
to the definition of model (see Chapter 1), each model M of the empty theory contains at least
one individual. Thus, the extension M∗ of the model M contains at least an individual which
will be reduced to a leaf.

Extension into trees Tord
∗ of the linear dense order relation without endpoints Tord

Let F be an empty set of function symbols and let R be a set of relation symbols containing
only the relation symbol < of arity 2. If t1 and t2 are terms, then we write t1 < t2 for < (t1, t2).
Let Tord the theory of the linear dense order relation without endpoints, whose signature is
S = F ∪R and whose axioms are the following propositions:

1 ∀x¬x < x,
2 ∀x∀y∀z (x < y ∧ y < z) → x < z,
3 ∀x∀y x < y ∨ x = y ∨ y < x,
4 ∀x∀y x < y → (∃z x < z ∧ z < y),
5 ∀x∃y x < y,
6 ∀x∃y y < x.

Let now F ∗ be an infinite set of function symbols each one of a non-nul arity and R∗ = {<, p}
a set of relation symbol containing the symbol < as well as the relation symbol p. Let S∗

be the signature F ∗ ∪ R∗. According to the transformations of axioms in Section 4.1.1, the
axiomatization of the extension into trees of the theory Tord is the S∗-theory Tord

∗ whose axioms
are the following propositions:

1 ∀x̄∀ȳ ¬pfx̄ ∧ ¬pfȳ ∧ fx̄ = fȳ →
∧

i xi = yi

2 ∀x̄∀ȳ f x̄ = gȳ → pfx̄ ∧ pgȳ
3 ∀x̄∀ȳ (

∧
i pxi) ∧ (

∧
j ¬pyj) → ∃!z̄

∧
k(¬pzi ∧ zk = tk(x̄, ȳ, z̄))

4 ∀x∀y x < y → (px ∧ py),
5 ∀x̄¬pfx̄,
6 ∃x px,
7 ∀x px→ ¬x < x,
8 ∀x∀y∀z px ∧ py ∧ pz → ((x < y ∧ y < z) → x < z),
9 ∀x∀y (px ∧ py) → (x < y ∨ x = y ∨ y < x),
10 ∀x∀y (px ∧ py) → (x < y → (∃z pz ∧ x < z ∧ z < y)),
11 ∀x px → (∃y py ∧ x < y),
12 ∀x px → (∃y py ∧ y < x),

where f and g are distinct function symbols taken from F ∗, x, y, z variables, x̄ a vector of
variables xi, ȳ a vector of variables yi, z̄ a vector of distinct variables zi and ti(x̄, ȳ, z̄) a term
which begins by an element de F ∗ followed by variables taken from x̄, ȳ or z̄.

85



Chapter 4. Extension into trees T ∗ of a first order theory T

According to axiom 5, and by replacing the relation symbol p by the relation symbol num,
this axiomatization is simplified to

1 ∀x̄∀ȳ f x̄ = fȳ →
∧

i xi = yi

2 ∀x̄∀ȳ ¬(fx̄ = gȳ)
3 ∀x̄ ∃!z̄

∧
k zk = tk(x̄, z̄)

4 ∀x∀y x < y → (num x ∧ num y),
5 ∀x̄¬num fx̄,
6 ∃xnum x,
7 ∀xnum x→ ¬x < x,
8 ∀x∀y∀z num x ∧ num y ∧ num z → ((x < y ∧ y < z) → x < z),
9 ∀x∀y (num x ∧ num y) → (x < y ∨ x = y ∨ y < x),
10 ∀x∀y (num x ∧ num y) → (x < y → (∃z num z ∧ x < z ∧ z < y)),
11 ∀xnum x → (∃y num y ∧ x < y),
12 ∀xnum x → (∃y num y ∧ y < x),

where f and g are distinct function symbols taken from F ∗, x, y, z variables, x̄ a vector of
variables xi, ȳ a vector of variables yi, z̄ a vector of distinct variables zi and ti(z̄, x̄) a term which
begins by an element of F ∗ followed by variables taken from x̄ or z̄.

This axiomatization is the same than those of the construction of trees on an ordered set Tord

given in Chapter 3.

4.2 Completeness of T ∗

Let us fix for all this section a signature S containing a set F of function symbols and a set R
of relation symbols, as well as a signature S∗ containing

• an infinite set F ∗ = F ∪ FA where FA is an infinite set of function symbols, each one of
non-nul arity, and disjoint from F ,

• a set R∗ = R∪{p} of relation symbols, containing R as well as a relation symbol p of arity
1.

Let us fix also an S-theory T and its extension into trees T ∗.
Suppose that the variables of V are ordered by a linear dense order relation without endpoints

denoted by �.

4.2.1 Flexible theory

Definition 4.2.1.1 We call leader of an S-equation α the greatest variable x in α, according to
the order �, such that T |= ∃!xα.

Example 4.2.1.2 Let x, y and z be variables such that x � y � z. Let us consider the theory
Ra of the additive rational numbers defined in Chapter 2. The variable x is leader of the equation
2.x+ 3.y = 1 + 2.z because x is the greatest variable and Ra |= ∃!x 2.x+ 3.y = 1 + 2.z.

Definition 4.2.1.3 A conjunction of S-atomic formulas α is called formated in T if

• α does not contain sub-formulas of the form f1 = f2 or rf1...fn or y = x, where all the fi

are 0-ary function symbols taken from F , r ∈ R and x � y,
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• each S-equation of α has a distinct leader which has no occurrences in other S-equations
or S-relations of α,

• if α′ is the conjunction of all the S-equations of α then for all x ∈ var(α′) we have T |=
∃?xα′.

Let us introduce now a class of theories Ti whose properties will enable us to show the
zero-infinite-decomposability of their extension into trees.

Definition 4.2.1.4 The theory T is called flexible if for each conjunction α of S-equations and
for each conjunction β of S-relations:

1. α ∧ β is equivalent in T to a formated conjunction of atomic formulas wnfv,

2. the S-formula ¬β is equivalent in T to a disjunction wnfv of S-equations and S-relations,

3. for all x ∈ V

• the S-formula ∃xβ is equivalent in T to false, or to a wnfv conjunction of S-relations,

• for all x ∈ V , we have T |= ∃{faux}
o∞ xβ.

Let us present now the main result of this chapter:

Theorem 4.2.1.5 If T is flexible then T ∗ is complete.

To show this theorem we will first introduce structured formulas much more complex than the
conjunctions of atomic formulas and that we call blocks. We will then show using these blocks
that if T is flexible then T ∗ is zero-infinite-decomposable and thus complete.

4.2.2 Blocks and solved blocks in T ∗

Definition 4.2.2.1 A block is a conjunction α of S∗-formulas of the form

• true, false, px, ¬px,

• x = y, x = fx1 . . . xn, with f ∈ F ∗,

• t1 = t2 ∧
∧n

i=1 pxi, where t1 and t2 are S-terms and var(t1 = t2) = {x1, . . . , xn},

• rt1 . . . tn, with r ∈ R and the ti S-terms,

and such that α contains px or ¬px for all variables x ∈ var(α). A relational block is a block
which does not contain S∗-equations. An equational block is a block which does not contain
S-relations and where each variable has at least an occurrence in an S∗-equation.

Example 4.2.2.2 Let us consider the S∗-theory Tord
∗. The following S∗-formula is a block

x = fxy ∧ z = gxy ∧ ¬px ∧ py ∧ pz.

While the S∗-formula
fxy = gyx ∧ px ∧ py,

is not a block because fxy and gyx are not S-terms but S∗-terms. The S∗-formula

fxy < gyx ∧ px ∧ py,
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is not a block because fxy and gyx are S∗-terms and not S-terms. The block

x = fxy ∧ y = z ∧ ¬px ∧ py ∧ pz,

is an equational block, while the block

x = fxy ∧ y = z ∧ ¬px ∧ py ∧ pz ∧ pw,

is not equational because the variable w does not occur in any equation of this block.

Definition 4.2.2.3 Let α be a block and x̄ be a vector of variables. A variable u is called
reachable in ∃x̄α if u is a free variable in ∃x̄α, or α has a sub-formula of the form y = t(u)∧¬p y
with t(u) an S∗-term containing u and y a reachable variable. In the last case, the equation
y = t(u) is called reachable in ∃x̄α.

Example 4.2.2.4 Let us consider the S∗-theory Tord
∗. In the formula

∃yz x = fxy ∧ y = z ∧ ¬px ∧ py ∧ pz,

the variables x and y as well as the equation x = fxy are reachable. The variable z as well as
the equation y = x are not reachable because the preceding formula does not contain sub-formulas
of the form ¬py.

From the general axiomatization of T ∗, given in Section 4.1.1, and more exactly from axioms
1 and 2, we have the following property

Property 4.2.2.5 Let α be a block. If all the variables of x̄ are reachable in ∃x̄α, then T ∗ |=
∃?x̄α.

Definition 4.2.2.6 A block α is called well-typed if α does not contain sub-formulas of the
form:

• px ∧ ¬px,

• x = hȳ ∧ px, with h ∈ F ∗ − F ,

• x = f0 ∧ ¬px, with f0 a constante of F ,

• x0 = fx1...xn ∧ ¬px0 ∧
∧n

i=1 pxi, with f ∈ F ,

• x0 = fx1...xn ∧ px0 ∧ ¬pxi, with f ∈ F ∗

• x0 = x1 ∧ px0 ∧ ¬px1,

• x0 = x1 ∧ ¬px0 ∧ px1,

• rt1...tn ∧ ¬pxi with r ∈ R and xi ∈ var(rt1...tn).

Definition 4.2.2.7 Let α be a well-typed block. An S∗-equation of α of the form t1 = t2 is
called tree-equation in α if for all x ∈ var(t1 = t2), px is a sub-formula of α. It is called
non-tree-equation in α if there exists x ∈ var(t1 = t2) such that ¬px is a sub-formula of α.
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In a block well-typed α every equation is either a tree-equation or a non-tree-equation. This
property holds since in a well-typed block there exists no sub-formulas of the form ¬px ∧ px.
Note also that all the non-tree-equations of a well-typed block α are of the form x = y or x = fȳ
with f ∈ F ∗.

Definition 4.2.2.8 Let α be a well-typed block. Let x = t, with t a term, be an S∗-tree-equation
of α. The variable x is called α-leader of the S∗-equation x = t. Let t1 = t2, with t1 and t2
two S-terms, be an S∗-non-tree-equation of α. We call α-leader of the S∗-equation t1 = t2 the
greatest variable xk in var(t1 = t2) according to the order � such that T |= ∃!xk t1 = t2.

Example 4.2.2.9 Let us consider the theories Tord and Tord
∗. Let x, y, z be variables with

x � y � z. Let α be the block

x = fxy ∧ z = y ∧ ¬px ∧ py ∧ pz.

The variable x is α-leader of the S∗-equation x = fxy. The variable y is α-leader of the S∗-
equation z = y because Tord |= ∃!y z = y and y � z.

Definition 4.2.2.10 A block α is called (�)-solved in T ∗ if

1. α is a well-typed block which does not contain sub-formulas of the form false ∧ β with β a
formula different from the formula true,

2. each S∗-equation of α has a distinct α-leader which does not occur in the S-relations of α,

3. every conjunction of S-equations and S-relations is formated in T .

Note that from the last point of this definition and according to the definition of the formated
formulas in T , we deduce that if x = y is a sub-formula of the (�)-solved block α then x � y.
Note also that every S∗-equation of the form x = y is also an S-equation.

Example 4.2.2.11 Let us consider the theory Tord
∗. Let x, y, z be variables with x � y � w � z.

The block
x = fxy ∧ y = w ∧ w = z¬px ∧ py ∧ pz ∧ pw,

is not (�)-solved because w is the leader of the S-equation w = z and occurs also in the S-equation
y = w. The blocks false, true, and

x = fxy ∧ y = z ∧ w = z ∧ ¬px ∧ py ∧ pz ∧ pw,

are (�)-solved.

Property 4.2.2.12 If T is flexible then every block is equivalent in T ∗ to a wnfv (�)-solved
block.

Proof. Let us introduce the following rewriting rules which transform a block into a wnfv
(�)-solved block in T ∗ for every flexible theory T . To apply the rule p1 =⇒ p2 to the block
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p means to replace in p, a sub-formula p1 by the formula p2, by considering the connector ∧
associative and commutative.

(1) px ∧ ¬px =⇒ false
(2) x = hȳ ∧ px =⇒ false
(3) x = f0 ∧ ¬px =⇒ false
(4) x0 = fx1...xn ∧ ¬px0 ∧

∧n
i=1 pxi =⇒ false

(5) x0 = gx1...xn ∧ px0 ∧ ¬pxi =⇒ false
(6) x0 = x1 ∧ px0 ∧ ¬px1 =⇒ false
(7) x0 = x1 ∧ ¬px0 ∧ px1 =⇒ false
(8) rt1...tn ∧ ¬p z =⇒ false
(9) false ∧ α =⇒ false,
(10) x = f1y1...ym ∧ x = f2z1...zn ∧ ¬px =⇒ false,
(11) x = x =⇒ true
(12) x = gy1...yn ∧ x = gz1...zn ∧ ¬px =⇒ x = gy1...yn ∧

∧
i∈1..n yi = zi ∧ ¬px,

(13) x = y ∧ x = gz1...zn ∧ ¬px =⇒ x = y ∧ y = gz1...zn ∧ ¬px,
(14) x = y ∧ x = z ∧ ¬px =⇒ x = y ∧ z = y ∧ ¬px
(15) y = x ∧ ¬px =⇒ x = y ∧ ¬px
(16) α ∧

∧
i∈I pxi =⇒ α′ ∧

∧
i∈I pxi

with h ∈ F ∗−F , f0 a constant of F , f ∈ F , g ∈ F ∗ and f1 and f2 two distinct elements of F ∗. In
the rule (8), r ∈ R and z ∈ var(rt1...tn), the rules (13), (14) and (15) are applied only if x � y.
In the rule (16), α is a non-formated conjunction in T of S-atomic formulas, var(α) = {x1..., xn},
I = {1, ..., n} is a finite possibly empty set and α′ is a formated conjunction (according to the
order �) of S-atomic formulas equivalent to α in T 20. Let us show now that every repeated
application of the preceding rules on a block α terminates, keeps the equivalence in T ∗ and
produces a wnfv (�)-solved block β.
Proof first part: every repeated application of the rules on a block terminates. Since the
variables which occur in our formulas are ordered by the linear dense order relation �, we can
number them by positive integers such that x � y ↔ no(x) > no(y), where no(x) is the positive
integer associated to the variable x. Let us consider the 5-tuple (n1, n2, n3, n4, n5) where the ni

are the following non-negative integers:

• n1 is the number of sub-formulas of the form x = fy1...yn, with f ∈ F ∗,

• n2 is a function which gives 1 if the formula contains a non-formated conjunction in T of
S-atomic formulas and 0 otherwise,

• n3 is the number of occurrences of atomic formulas,

• n4 is the sum of no(x) for every occurrence of a variable x,

• n5 is the number of sub-formulas of the form y = x with x � y.

for each rule there exists a row i such that the application of this rule decreases or does not
change the value of the nj with 1 ≤ j < i, and decreases the value of ni. The row i is equal to: 3
for the rules (1)...(10), 4 for the rule (11), 1 for the rule (12), 4 for the rules (13) and (14), 5 for
the rule (15) and 2 for the rule (16). To each sequence of formulas obtained by finite application
of the rules, we can associate a series of 5-tuples (n1, n2, n3, n4, n5) which is strictly decreasing

20The formula α′ always exists since T is flexible.
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in the lexicographic order. Since these ni’s are positive integers they can not be negative and
thus this series is finite and the application of our rules terminates.
Proof, second part: The rules keep the equivalence in T ∗. The rule (1) is evident in T ∗. The
rule (2) comes from axiom 6 of T ∗. The rules (3) and (4) come from axiom 5 of T ∗. The rule
(5) comes from axioms 5 and 6. The rules (6) and (7) come from the properties of the equality.
The rule (8) comes from axiom 4 of T ∗. The rule (9) is evident. The rule (10) comes from axiom
2 of T ∗. The rule (11) is evident in T ∗. The rule (12) comes from axiom 1 of T ∗. The rules
(13), (14) and (15) are evident in T ∗ and come from the properties of the equality. The rule (16)
holds since T is flexible and using axioms 4,5 and 8 of T ∗ which enable to move from properties
on T to properties on T ∗ by introducing typing constraints.
Proof third part: every finite application of these rules on a block produces a (�)-solved
block equivalent in T ∗. Let us suppose that the obtained formula is not a (�)-solved block and
no-rules can be applied. Thus, at least one of the three conditions of Definition 4.2.2.10 does not
hold. According to which condition 1 or 2 or 3 does not hold one at least of the rules (1),..., (9)
or (10),(12),(13),(14), (16) or (11),(15), (16) can be applied which contradicts our supposition.
2

Property 4.2.2.13 Let α be an equational (�)-solved block, different from the formula false.
Let α∗ be the conjunction of the sub-formulas of α of the form py or ¬py with y a variable
of α which is not α-leader in the S∗-equations of α. Let x̄ be the set of the α-leaders of the
S∗-equations of α. We have T ∗ |= α∗ → ∃!x̄α.

This property comes from axiom 3 of T ∗ and using the fact that the block α is (�)-solved.

Example 4.2.2.14 Let us consider the theory Tord. We have

T ∗ad |= pw ∧ pz → (∃!xy x = fxw ∧ y = z ∧ ¬px ∧ py ∧ pz ∧ pw).

But we have not
T ∗ad |= ∃!xy x = fxw ∧ y = z ∧ ¬px ∧ py ∧ pz ∧ pw

because if we instantiate z by a tree-value for example f1 (f a 1-ary function symbol taken from
F ∗ − {+,−, 0, 1}) then y will be a tree which contradicts the fact that we have py.

4.2.3 T ∗ is zero-infinite-decomposable

To show Theorem 4.2.1.5, it is enough to show the following theorem:

Theorem 4.2.3.1 If T is flexible then T ∗ is zero-infinite-decomposable.

Proof. Let T be a flexible theory. Let us show that T ∗ satisfies the fifth conditions of Definition
3.2.1.1. Let us denote by F0 the set of the constants of F . The sets Ψ(u), A, A′ and A′′ are
chosen as follows:

Choice of the sets Ψ(u), A, A′ and A′′

• Ψ(u) is the set of the S∗-formulas of the form ∃ȳ u = fȳ ∧ ¬pu, with f a function symbol
taken from F ∗ − F0.

• A is the set of the blocks.

• A′ is the set of the S∗-formulas of the form ∃x̄′α′, where
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– α′ is an equational (�)-solved block, different from the formula false, and such that
the order � is such that all the variables of x̄′ are greater than the free variables of
∃x̄′α′,

– all the variables of x̄′ and all the S∗-tree-equations of α′ are reachable in ∃x̄′α′,
– all the variables of the S∗-non-tree-equations of α′ are reachable in ∃x̄′α′,

• A′′ is the set of the (�)-solved relational blocks.

Note that the set A is closed for the conjunction and A′′ is a sub-set of A.

T ∗ satisfies the first condition of Definition 3.2.1.1

Let us show that every formula of the form ∃xα∧ψ, with α ∈ A and ψ any formula is equivalent
in T ∗ to a wnfv S∗-formula of the form

∃x′ α′ ∧ (∃x′′ α′′ ∧ (∃x′′′ α′′′ ∧ ψ))), (4.1)

with ∃x′α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A and T ∗ |= ∀x̄′′ α′′ → ∃!x̄′′′α′′′.
Let us choose the order � such that all the variables of x̄ are greater than the free variables of

∃x̄α. Let β be the (�)-solved block of α, ( β exists according to Property 4.2.2.12). Let X be the
set of the variables of the vector x̄. Let Yrea be the set of the reachable variables in ∃x̄β and let
Ynrea be the set of the non reachable variables in ∃x̄β. Let us rename the variables of Ynrea ∩X
which have at least one occurrence in a non-tree-equation of β by variables greater than all the
other variables of β. Note that these variables are quantified and thus we can rename them and
keep the equivalence. Let β∗ be the (�)-solved block of β. Let Lead be the set of the β∗-leaders
of the S∗-equations of β∗. If faux is a sub-formula of β∗ then x̄′ = x̄′′ = x̄′′′ = ε, α′ = true,
α′′ = false and α′′′ = true. Else
− x̄′ contains the variables of X ∩ Yrea,
− x̄′′ contains the variables of (X − Yrea)− Lead.
− x̄′′′ contains the variables of (X − Yrea) ∩ Lead.
− α′ is of the form α′1 ∧α′2 where α′1 is the conjunction of (1) all the tree-equations of β∗ which
are reachable in ∃x̄β∗, (2) all the non-tree-equations of β∗ whose β∗-leader is not element of
Ynacc ∩ X. The formula α′2 is the conjunction of all the sub-formulas of β∗ of the form px or
¬px with x having at least an occurrence in α′1.
− α′′ is of the form α′′1 ∧α′′2 where α′′1 is the conjunction of all the sub-formulas of β∗ of the form
px or ¬px with x 6∈ x̄′′′. The formula α′′2 is the conjunction of all the sub-formulas of β∗ of the
form rt1...tn with r ∈ R and ti S-terms.
− α′′′ is of the form α′′′1 ∧ α′′′2 where α′′′1 is the conjunction of (1) all the S∗-tree-equations of β∗

which are not reachable in ∃x̄β∗, (2) all the S∗-non-tree-equations of β∗ whose β∗-leaders belong
to Ynrea ∩X. The formula α′′′2 is the conjunction of all the sub-formulas of β∗ of the form px or
¬px with x having at least an occurrence in α′′′1 .

According to our construction, it is clear that ∃x̄′α′ ∈ A′, α′′ ∈ A′′ and α′′′ ∈ A. Moreover,
according to axiom 3 of T ∗ and Property 4.2.2.13 we have Tord |= ∀x̄′′α′′ → ∃!x̄′′′α′′′. Let us
show now that (4.1) and ∃x̄α ∧ ψ are equivalents in T ∗. Let X ′, X ′′ and X ′′′ be the sets of the
variables of the vectors21 of x̄′, x̄′′ and x̄′′′. If β∗ is the formula false, then the equivalence of
the decomposition is evident. Else, β∗ is a (�)-solved block which does not contain the sub-
formula false. Thus, according to our construction we have X = X ′ ∪X ′′ ∪X ′′′, X ′ ∩X ′′ = ∅,

21Of course, if x̄ = ε then X = ∅
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X ′ ∩X ′′′ = ∅, X ′′ ∩X ′′′ = ∅, for all x′′i ∈ X ′′ we have x′′i 6∈ var(α′) and for all x′′′i ∈ X ′′′ we have
x′′′i 6∈ var(α′ ∧ α′′). These properties come from the definition of (�)-solved block and the order
� which has been chosen such that the quantified non-reachable variables are greater than the
quantified reachable variables which are greater than the free variables in ∃x̄β∗. On the other
hand, each S∗-equation and each S∗-relation of β∗ occurs in α′ ∧ α′′ ∧ α′′′ and each S∗-equation
and each S∗-relation of α′ ∧ α′′ ∧ α′′′ occurs in β∗ and thus T ∗ |= β∗ ↔ (α′ ∧ α′′ ∧ α′′′). We have
shown that the quantifications are coherent and the equivalence T ∗ |= β∗ ↔ α′ ∧ α′′ ∧ α′′′ holds.
According to Property 4.2.2.12 we have T ∗ |= α ↔ β∗ and thus the decomposition keeps the
equivalence in T ∗.

T ∗ satisfies the second condition of Definition 3.2.1.1

Let us show that T ∗ satisfies the second condition of Definition 3.2.1.1, i.e. if ∃x̄′α′ ∈ A′ then
T ∗ |= ∃?x̄′α′. Since ∃x̄′α′ ∈ A′ and according to the choice of the set A′, the variables of x̄′ are
reachable in ∃x̄′α′. Thus, according to Property 4.2.2.5 we get T ∗ |= ∃?x̄′α′.

Let us show now that if y is a free variable in ∃x̄′α′ then T ∗ |= ∃?yx̄′ α′, or there exists
ψ(u) ∈ Ψ(u) such that T ∗ |= ∀y (∃x̄′ α′) → ψ(y). Let y be a free variable of ∃x̄′α′. Since α′ is an
equational (�)-solved block different from false, then three cases arise:

Either, y occurs in a sub-formula of α′ of the form y = t(x̄′, z̄′, y) ∧ ¬py, where z̄′ is the set
of the free variables of ∃x̄′α′ which are different from y, t(x̄′, z̄′, y) is a term which begins by an
element of F ∗ − F0, followed by variables taken from x̄′ or z̄′ or {y}. In this case, the formula
∃x̄′α′ implies in T ∗ the formula

∃x̄′ y = t(x̄′, z̄′, y) ∧ ¬p y,

which implies in T ∗ the formula

∃x̄′z̄′w y = t(x̄′, z̄′, w) ∧ ¬p y, (4.2)

where y = t(x̄′, z̄′, w) is the formula y = t(x̄′, z̄′, y) in which we have replaced every free occurrence
of y in the term t(x̄′, z̄′, y) by the variable w. According to the choice of the set Ψ(u) defined in
Section 4.2.3, the formula (4.2) belongs to Ψ(y).

Or, y occurs in a sub-formula of α′ of the form y = z ∧¬py. In this case, since y is α′-leader
of the equation y = z, then we have y � z (because α′ is (�)-solved), and thus, z is a free
variable in ∃x̄′α′ because the order � is such that all the variables of x̄′ are greater than the free
variables of ∃x̄′α′ (thus greater than y). On the other hand, since α′ is a (�)-solved block, y is
not α′-leader in another equation of α′ (because all the α′-leaders are distinct), thus the variable
y can not occur in another left hand sides of an S∗-equation of α′ (because ¬py is a sub-formula
of the well-typed block α′). Thus, since the variables of x̄ are reachable in ∃x̄′α′ (according to
the choice of the set A′ in Section 4.2.3) then all the variables of x̄′ remain reachable in ∃x̄′y α′.
Moreover, for each value of the free variable z, there exists at most a value for y. Thus, according
to Property 4.2.2.5 we have T ∗ |= ∃?x̄′y α′.

Or, y occurs only in sub-formulas of the form

x0 = t(y) or t1 = t2, (4.3)

with x0 = t(y) an S∗-tree-equation of α′, t(y) an S∗-term which begins by an element of f ∈ F ∗
and contains at least an occurrence of the variable y, and t1 = t2 an S∗-non-tree-equation of α′

containing at least an occurrence of y. Let us recall that according to the choice of the set A′

(section 4.2.3), x̄′ contains the quantified reachable variables in ∃x̄′ α′ and all the tree-equations
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of α′ are reachable in ∃x̄′α′. Two cases arise: (1) If y occurs in a tree-equation of α′, then since y
does not occur in another left hand side of a tree-equation of α′, then the variables of x̄′y remain
reachable in ∃x̄′y α′ and thus according to Property 4.2.2.5 we get T ∗ |= ∃?x̄′y α′. (2) If y occurs
only in non-tree-equations of α′, then according to the choice of the set A′ the variables of x̄′

are reachable in ∃x̄′ α′. Since y does not occur in a tree-equation of α′, then the variables of x̄′

remain reachable in ∃x̄′y α′. Moreover, since α′ is (�)-solved then its S-equations are formated
and thus T ∗ |= ∃?y α and thus according to Property 4.2.2.5 we get T ∗ |= ∃?x̄′y α′.

In a ll the cases, T ∗ satisfies the second condition of Definition 2.2.1.1.

T ∗ satisfies the third condition of Definition 3.2.1.1

T ∗ satisfies the first point of the third condition of Definition 3.2.1.1

Let us show that if α′′ ∈ A′′ then the formula ¬α′′ is equivalent in T ∗ to a disjunction of elements
of A, i.e. to a disjunction of blocks. Let α′′ be an S∗-formula which belongs to A′′.

According to the choice of the set A′′ given in Section 4.2.3, either α′′ is the formula false
and thus ¬α′′ is the formula true which belongs to A′′, or α′′ is a (�)-solved relational block of
the form

β ∧ (
∧

x∈X

px) ∧ (
∧

y∈Y

¬py),

with β a conjunction of S-relations of the form rt1...tn with r ∈ R and var(β) ⊆ X. According
to the second point of the definition of flexible theory, we have T |= ¬β ↔ β′ where β′ is a
disjunction of S-relations and S-equations. Thus, according to the axiomatization of T ∗ (more
exactly Axioms 4,5 and 8), the S∗-formula ¬α′′ is equivalent in T ∗ to an S∗-formula wnfv of the
form

(
∨

k∈K

(β′k ∧ pk)) ∨ (
∨

x∈X

¬px) ∨ (
∨

y∈Y

py),

where each β′k is either an S-equation or an S-relation, pk is a conjunction of S∗-formulas of the
form px for every variable x ∈ var(β′k). It is obvious that this formula is a disjunction of blocks.
Thus T ∗ satisfies the first point of the third condition of Definition 3.2.1.1.

T ∗ satisfies the second point of the third condition of Definition 3.2.1.1

Let us show that if α′′ ∈ A′′ then for every variable x′′, the S∗-formula ∃x′′α′′ is equivalent in
T ∗ to an element of A′′. Let α′′ be an S∗-formula of A′′, three cases arise:

(1) If x′′ has no occurrences in α′′, then the S∗-formula ∃x′′ α′′ is equivalent in T ∗ to α′′ which
belongs to A′′.

(2) If the S∗-formula ∃x′′ α′′ is of the form ∃x′′ α′′1 ∧ ¬px′′ with α′′1 ∈ A′′ and x′′ has no
occurrences in α′′1, then the S∗-formula ∃x′′ α′′ is equivalent in T ∗ to α′′1 ∧ (∃x′′ ¬px′′), which
according to axiom 3 of T ∗ is equivalent in T ∗ to α′′1, which belongs to A′′.

(3) If the S∗-formula ∃x′′ α′′ is of the form

∃x′′ α′′1 ∧ ϕ,

with α′′1 a conjunction of S∗-relations with x′′ 6∈ var(α′′1) and ϕ a relational block containing
only S∗-relations of the form px′′ or rt1...tn with r ∈ R and x′′ ∈ var(rt1...tn), then the formula
∃x′′ α′′ is equivalent in T ∗ to

α′′1 ∧ φ ∧ (∃x′′ ϕ), (4.4)
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with φ the conjunction of the typing constraints of ϕ of the form px or ¬px with x ∈ var(α′′1).
Thus, the formula α′′1 ∧φ is a relational (�)-solved block. If ϕ is reduced to the formula px, then
according to axiom 7 of T ∗, the formula (4.4) is equivalent in T ∗ to α′′1 ∧ φ, which belongs to
A′′. Else, ϕ is of the form ϕ1 ∧ϕ2 ∧ px′′ where ϕ1 is the conjunction of the typing constraints of
ϕ which have no occurrences of x′′, and ϕ2 is the conjunction of the relations of ϕ of the form
rt1...tn with r ∈ R and the ti’s S-terms. According to the last point of the definition of flexible
theory, the formula ∃x′′ ϕ2 is equivalent in T to false or to a conjunction ϕ′2 wnfv of S-relations.
Thus, according to axioms 8 and 4 of T ∗, the formula ∃x′′ ϕ1∧ϕ2∧px′′ is equivalent in T ∗ either
to false or to the relational (�)-solved block wnfv ϕ1 ∧ϕ′2. Thus, the formula (4.4) is equivalent
in T ∗ to false or to

α′′1 ∧ φ ∧ ϕ1 ∧ ϕ′2,

which is a relational (�)-solved block. Thus, T ∗ satisfies the second point of the third condition
of Definition 3.2.1.1.

T ∗ satisfies the third point of the third condition of Definition 3.2.1.1

Let us first introduce two properties which hold in each S∗-model M∗ of T ∗. The first one comes
from the axiomatization of T ∗ and introduces the notion of zero-infinite in M∗. The second one
comes from the last point of the definition of the flexible theories using also axioms 4 and 8 of
T ∗.

Property 4.2.3.2 Let M∗ be an S∗-model of T ∗ and f ∈ F ∗ − F0. The set of the individuals i
of M∗, such that M∗ |= ∃x i = fx ∧ ¬pi, is infinite.

Property 4.2.3.3 Let M∗ be an S∗-model of T ∗. Let
∧

j∈J rj(x) be a conjunction of S-relations,
i.e. a conjunction of S-formulas of the form rt1...tn with r ∈ R and the ti’s S-terms. Let
∃x

∧
j∈J r

′
j(x) be an instantiation of ∃x

∧
j∈J rj(x) by individuals of M∗. Let ϕ(x) be the formula

px ∧
∧
j∈J

r′j(x). (4.5)

The set of the individuals i of M∗ such that M∗ |= ϕ(i) is empty or infinite.

Let M∗ be an S∗-model of T ∗. Recall that Ψ(u) is the set of the formulas of the form
∃ȳ u = fȳ ∧ ¬pu, with f ∈ F ∗ − F0. Let ϕ(x) be a formula which belongs to A′′. Let us show
that for every variable x we have T ∗ |= ∃Ψ(u)

o∞ xϕ(x). Let ∃xϕ′(x) be an instantiation of ∃x̄ ϕ(x)
by individuals of M∗ such that M∗ |= ∃xϕ′(x). Let us show that there exists an infinity of
individuals i of M∗ which satisfy

M∗ |= ϕ′(i) ∧ ¬ψ1(i) ∧ · · · ∧ ¬ψn(i),

with ψj(u) ∈ Ψ(u). This condition can be replaced by the following stronger one

M∗ |=
(

p i ∨
ψn+1(i)

)
∧ ϕ′(i) ∧ ¬ψ1(i) ∧ · · ∧¬ψn(i),

where ψn+1(u) belongs to Ψ(u) and has been chosen different from all the ψ1(u), . . . , ψn(u),
(always possible because F ∗ − F is infinite according to the definition of F ∗). Since for every k
between 1 and n, we have
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• T ∗ |= px→ ¬ψk(x)

• T ∗ |= ψn+1(x) → ¬ψk(x) (axiom 2 of T ∗ conflict of symbols).

The preceding condition is simplified to

M∗ |= (p i ∧ ϕ′(i)) ∨ (ψn+1(i) ∧ ϕ′(i)).

Thus, knowing M∗ |= ∃xϕ′(x), it is enough to show that there exists an infinity of individuals i
of M∗ such that

M∗ |= p i ∧ ϕ′(i) or M∗ |= ψn+1(i) ∧ ϕ′(i). (4.6)

two cases arise:
Either, the formula px occurs in ϕ′(x). Since ϕ′(x) is an instantiation of an equational

(�)-solved block and M∗ |= ∃xϕ′(x), then according to axiom 4 of T ∗, we deduce that the
S∗-formula px ∧ ϕ′(x) is equivalent in M∗ to an S∗-formula of the form (4.5). According to
Property 4.2.3.3 and since M∗ |= ∃x px ∧ ϕ′(x), there exists an infinity of individuals i of M∗

such that M∗ |= p i ∧ ϕ′(i) and thus such that (4.6).
Or, the S∗-formula px does not occur in ϕ′(x). Since ϕ′(x) is an instantiation of a rela-

tional (�)-solved block and M∗ |= ∃xϕ′(x), then the S∗-formula ψn+1(x) ∧ ϕ′(x) is equiva-
lent in M∗ to ψn+1(x). According to Property 4.2.3.2, there exists an infinity of individuals
i of M∗ such that M∗ |= ψn+1(i), thus such that M∗ |= ψn+1(i) ∧ ϕ′(i) and thus such that
(4.6).

In all the cases T ∗ satisfies the third condition of Definition 3.2.1.1.

T ∗ satisfies the fourth condition of Definition 3.2.1.1

Let us show that every conjunction of flat formulas is equivalent in T ∗ to a disjunction of elements
of A. For that, it is enough to show that every flat formula is equivalent in T ∗ to a disjunction
of blocks. Let ϕ be a flat formula. If it is of the form true, false or px then ϕ is a block. Else
the following equivalences after distribution of the ∧ on the ∨ give the needed combinations

T ∗ |= rx0...xn ↔
[
rx0...xn∧∧n

i=0(pxi ∨ ¬pxi)

]
,

T ∗ |= x0 = x1 ↔
[
x0 = x1∧∧1

i=0(pxi ∨ ¬pxi)

]
,

T ∗ |= x0 = fx1...xn ↔
[
x0 = fx1...xn∧∧n

i=0(pxi ∨ ¬pxi)

]
,

with r ∈ R and f ∈ F ∗. Thus T ∗ satisfies the fourth condition of Definition 3.2.1.1.

T ∗ satisfies the fifth condition

Let us show that for every S∗-proposition ϕ of the form ∃x̄′α′∧α′′ with ∃x̄′α′ ∈ A′ and α′′ ∈ A′′,
we have x̄ = ε, α′ ∈ {true, false} and α′′ ∈ {true, false}. Since ϕ does not contain free variables,
then there exists no reachable variables and no reachable equations in ∃x̄′α′. Thus, according
to Section 4.2.3, we have x̄′ = ε. According to the choice of the set A′, the S∗-formula α′ is a
(�)-solved block different from the formula false, thus since ∃ε α′ does not contain free variables,
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then α′ is the formula true22. Thus, the S∗-proposition ϕ is of the form ∃ε true ∧α′′. According
to the choice of the set A′′ given in Section 4.2.3, α′′ is a relational (�)-solved block. Since it
does not contain free variables then it is either the formula true, or the formula false23. Thus,
the theory T ∗ satisfies the fifth condition of Definition 3.2.1.1.

The theory T ∗ satisfies all the conditions of Definition 3.2.1.1. Thus it is zero-infinite-
decomposable and thus complete. The theorem 4.2.1.5 is then proved. 2

4.3 Extension into trees T ∗
ad of ordered additive rational numbers

4.3.1 Axiomatization

Let F = {+,−, 0, 1} be a set of function symbols of respective arities 2, 1, 0, 0. Let R = {<}
a set of relation symbols containing only the binary relation symbol <. Let S be the signature
F ∪R.

Notation 4.3.1.1 Let a be a positive integer and the t1, ..., tn’s S-terms. Let us denote by

• Z the set of the integers,

• t1 < t2, the S-term < t1t2,

• t1 + t2, the S-term +t1t2,

• t1 + t2 + t3, the S-term +t1(+t2t3),

• 0.t1, the S-term 0,

• −a.t1, the S-term (−t1) + · · ·+ (−t1)︸ ︷︷ ︸
a

,

• a.t1, the S-term t1 + · · ·+ t1︸ ︷︷ ︸
a

.

Let Tad be the S-theory of ordered additive rational numbers. The axiomatization of Tad

consists in the set of the following S-propositions

1 ∀x∀y x+ y = y + x,
2 ∀x∀y∀z x+ (y + z) = (x+ y) + z,
3 ∀xx+ 0 = x,

4 ∀xx+ (−x) = 0,
5n ∀xn.x = 0 → x = 0, (n 6= 0)
6n ∀x∃!y n.y = x, (n 6= 0)
7 ∀x¬x < x,
8 ∀x∀y∀z (x < y ∧ y < z) → x < z,
9 ∀x∀y (x < y ∨ x = y ∨ y < x),
10 ∀x∀y x < y → (∃z x < z ∧ z < y),
11 ∀x∃y x < y,
12 ∀x∃y y < x,
13 ∀x∀y ∀z x < y → (x+ z < y + z),
14 0 < 1.

22The formula α′ does not contain sub-formulas of the form f1 = f2 with f1 and f2 constants of F because α′

is (�)-solved and thus all the S-equations are formated.
23The formula α′′ does not contain sub-formulas of the form rf1...fn with r ∈ R and fi constants of F because

α′ is (�)-solved and thus all the S-relations are formated.
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with n a non-nul integer.
Property 4.3.1.2

Tad |=
n∑

i=1

ai.xi = a0.1 ↔ ak.xk =
n∑

i=1,i6=k

(−ai).xi + a0.1,

for every k ∈ {1, ..., n}.

Let F ∗ be an infinite set of function symbols containing the set {+,−, 0, 1}. Let R∗ = {<, p}
be a set of relation symbols containing the symbol < as well as the relation symbol p. Let S∗ be
the signature F ∗ ∪ R∗. According to the transformations of axioms given in Section 4.1.1, the
axiomatization of T ∗ad is the infinite set of the following S∗-propositions:

1 ∀x̄∀ȳ ((¬p fx̄) ∧ (¬p fȳ) ∧ fx̄ = fȳ) →
∧

i xi = yi,
2 ∀x̄∀ȳ f x̄ = gȳ → p fx̄ ∧ p gȳ,
3 ∀x̄∀ȳ (

∧
i∈I pxi) ∧ (

∧
j∈J ¬p yj) → (∃!z̄

∧
k∈K(¬p zk ∧ zk = tk(x̄, ȳ, z̄))),

4 ∀x∀y x < y → (px ∧ p y),
5 ∀x∀y px+ y ↔ px ∧ p y,
6 ∀x p − x↔ px,
7 ∀x̄¬phx̄,
8 ∀x∀y (px ∧ p y) → x+ y = y + x,
9 ∀x∀y∀z (px ∧ p y ∧ p z) → x+ (y + z) = (x+ y) + z,
10 ∀x px→ x+ 0 = x,
11 ∀x px→ x+ (−x) = 0,
12n ∀x px→ (nx = 0 → x = 0), (n 6= 0)
13n ∀x px→ ∃!y p y ∧ ny = x, (n 6= 0)
14 ∀x px→ ¬x < x,
15 ∀x∀y∀z px ∧ p y ∧ p z → ((x < y ∧ y < z) → x < z),
16 ∀x∀y (px ∧ p y) → (x < y ∨ x = y ∨ y < x),
17 ∀x∀y (px ∧ p y) → (x < y → (∃z p z ∧ x < z ∧ z < y)),
18 ∀x px → (∃y p y ∧ x < y),
19 ∀x px → (∃y p y ∧ y < x),
20 ∀x∀y ∀z (px ∧ p y ∧ p z) → (x < y → (x+ z < y + z)),
21 0 < 1,

with f and g two distinct function symbols taken from F ∗, h ∈ F ∗ − F , x, y, z variables, x̄ a
vector of variables xi, ȳ a vector of variables yi, z̄ a vector of distinct variables zi and tk(x̄, ȳ, z̄)
an S∗-term which begins by a function symbol fk element of F ∗ followed by variables taken from
x̄ or ȳ or z̄. Moreover, if fk ∈ F then tk(x̄, ȳ, z̄) contains at least a variable of ȳ or z̄. A similar
theory has been introduced by A. Colmerauer to model the execution of Prolog III and Prolog
IV [6].

Note that the theory of trees and the theory of additive ordered rational numbers have non-
disjoint signatures. In fact, the symbols + and − are tree constructors in the theory of trees
and operations of addition and subtraction in the theory of additive ordered rational numbers.
Note also that T ∗ad does not accept full elimination of quantifiers. For example, the S∗-formula
∃x y = fx with f ∈ F − {+,−, 0, 1} can not be simplified anymore in T ∗ad.

4.3.2 Completeness

Theorem 4.3.2.1 The extension into trees T ∗ad of ordered additive rational numbers Tad is a
complete theory.
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According to Theorem 4.2.1.5, it is enough to show that Tad is flexible to get the completeness
of T ∗ad. Thus, let us show the following property

Property 4.3.2.2 The theory Tad of ordered additive rational numbers is a flexible theory.

Proof. Let us show that Tad satisfies the three conditions of Definition 4.2.1.4. In order to
simplify this proof, we will remove the prefix S from the words: equations, relations, terms,
formulas, since we will handle only the theory Tad of signature S.

Let us denote by
∑n

i=1 ti, the term t1 + t2 + ...+ tn + 0, where t1 + t2 + ...+ tn is the term
t1+t2+...+tn in which we have removed all the terms ti which are equal to 0. For n = 0 the term∑n

i=1 ti is reduced to the term 0. Formulas of the form
∑n

i=1 ai.xi = a0.1 and
∑n

i=1 ai.xi < a0.1
with ai ∈ Z are called blocks in Tad. According to Definition 4.2.1.1, and since for all xj ∈
var(

∑n
i=1 ai.xi = a0.1) with aj 6= 0 we have Tad |= ∃!xj

∑n
i=1 ai.xi = a0.1, (Property 4.3.1.2 and

axiom 6n of Tad), then the leader of an equation of the form
∑n

i=1 ai.xi = a0.1 is quit simply the
greatest variable xk with k ∈ {1, ..., n} such that ak 6= 0.

Tad satisfies the first condition of Definition 4.2.1.4

Let us show that every conjunction of equations and relations is equivalent in T to a formated
conjunction of atomic formulas wnfv, i.e. to a conjunction α wnfv of atomic formulas such that

1. α does not contain sub-formulas of the form f1 = f2 or rf1...fn or y = x, where all the fi

belong to {0, 1}, r ∈ {<} and x � y,

2. each equation of α has a distinct leader which have no occurrences in other equations or
relations of α,

3. if α′ is the conjunction of the equations of α then for all x ∈ var(α′) we have Tad |= ∃?xα′.

Let us introduce now the following rules that transform every conjunction of flat formulas
either to false, or to a wnfv formated conjunction of blocks equivalent in Tad.

(1) false ∧ α =⇒ false
(2) 0 = 0.1 =⇒ true
(3) 0 = a0.1 =⇒ false
(4) x = y =⇒ x+ (−1).y = 0.1
(5) x = −y =⇒ x+ y = 0.1
(6) x = y + z =⇒ x+ (−1).y + (−1).z = 0.1

(7)

[ ∑n
i=1 ai.xi = a0.1∧∑n
i=1 bi.xi = b0.1

]
=⇒

[ ∑n
i=1 ai.xi = a0.1∧∑n
i=1(bkai − akbi).xi = (bka0 − akb0).1

]

(8)

[ ∑n
i=1 ai.xi = a0.1∧∑n
i=1 bi.xi < b0.1

]
=⇒

[ ∑n
i=1 ai.xi = a0.1∧∑n
i=1 λ(bkai − akbi).xi < (bka0 − akb0).1

]

In the rule (3), a0 6= 0. In the rules (7) and (8), the variable xk is the leader of the equation∑
i ai.xi = a0.1 and bk 6= 0. In the rule (8), λ = 1 if ak > 0 and λ = −1 otherwise. Of course,

every repeated application of these rules terminates and produces either false or a formated
conjunction wnfv of blocks equivalent in Tad.

Let α be a conjunction of atomic formulas. By introducing quantified variables to transform
the formulas into flat formulas, α is equivalent in Tad to a formula of the form ∃x̄ β with β a
conjunction of flat formulas. Let us choose the order � such that the variables of x̄ are greater
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than free variables of ∃x̄ β. Let δ be the formula obtained from β after application of the
preceding rules. Two cases arise:

Either, δ is the formula false, thus the formula ∃x̄ δ is equivalent to false in Tad, thus the
conjunction α is equivalent to false in Tad which is a formated atomic formula.

Or, δ is a formated conjunction of blocks such that each variable of x̄ has an occurrence as
leader in an equation of δ. This restriction comes from the order � which has been chosen such
that the variables of x̄ are greater than the free variables of ∃x̄ β. Thus, the formula δ is of the
form

(
∧
i∈I

δxi) ∧ δ∗,

where each δxi is an equation of δ whose leader xi is a variable of x̄ and where δ∗ is a conjunction
of blocks which does not contain occurrences of the variables of x̄. The formula ∃x̄β is then
equivalent in Tad to

δ∗ ∧ (∃x̄
∧
i∈I

δxi),

which since each leader xi does not occur in another equation, is equivalent in Tad to

δ∗ ∧
∧
i∈I

(∃xi δxi),

which since for each leader xi we have Tad |= ∃!xiδxi , is equivalent in Tad to δ∗. Thus, the
formula α is equivalent to the formula δ∗ which is a formated conjunction of blocks and thus a
conjunction of atomic formulas. Then, the theory Tad satisfies the first condition of Definition
4.2.1.4.

Tad satisfies the second condition of Definition 4.2.1.4

Let us show that every formula of the form ¬α where α is a conjunction of relations is equivalent
in Tad to a disjunction of equations and relations. According to the preceding point, the formula
α is equivalent in Tad to a conjunction of blocks of the form

∑n
j=1 bj .xj < b0.1. Since the order

is linear then we have

Tad |= ¬(
n∑

j=1

bj .xj < b0.1) ↔ ((
n∑

j=1

(−bj).xj < (−b0).1) ∨ (
n∑

j=1

bj .xj = b0.1))

Thus, the formula ¬α is equivalent in Tad to a disjunction of blocks, and thus to a disjunction
of equations and relations. The theory Tad satisfies the second condition of Definition 4.2.1.4.

Tad satisfies the third condition of Definition 4.2.1.4

Let us show that for every conjunction of relations β and every variable x we have:

• the formula ∃xβ is equivalent in Tad either to false, or to a wnfv conjunction of relations,

• Tad |= ∃{faux}
o∞ xβ.

The first point is evident and comes from the Fourier elimination of quantifiers. The second
point holds since the order is dense and without endpoints. Let M be a model of Tad. For every
instantiation ∃xβ′(i) of ∃xβ(i) by individuals of M , if M |= β′(i) then there exists an infinity
of individuals i of M such that M |= β′(i), thus Tad |= ∃{faux}

o∞ xβ.
The theory Tad is flexible, and thus the extension into trees T ∗ad is zero-infinite-decomposable.

Consequently it is complete according to Theorem 4.2.1.5. 2
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4.4 Discussion and partial conclusion

Since the theory of finite or infinite trees does not accept full elimination of quantifiers, then
the extension into trees of any first-order theory T does not accept full elimination of quantifiers
but has a big power of expressiveness and enables us to model hard problems in the form of
first order constraints. We can cite for example the constraints representing k-winning positions
in multi-players games introduced by A. Colmerauer and B. Dao [16, 7] which can be modeled
easily using an extension into trees of additive integer numbers. The idea of the extension of
the model of Prolog IV by other first order theories uses also extension into trees of first order
theories. In fact, this work is a perspective of an extension of Prolog IV, by allowing the user to
quantify the Prolog clauses and use our decision procedure to solve these clauses. Unfortunately,
the two decision procedures given in Chapter 2 and 3 solve only propositions and can not present
the solutions of the free variables in a clear and explicit way. A such work needs more complex
definitions than those of the flexible theories as well as strong semantic conditions on the function
and relation symbols of T . Let us then choose for example the theory T ∗ad of additive ordered
rational numbers and let us try to give an efficient algorithm for solving any first order constraint
in T ∗ad ! This will be our goal in Chapter 5.
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Chapter 5

Solving first order constraints in T ∗ad
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We present in this chapter an algorithm for solving general first order constraints in the theory
T ∗ad. The algorithm is given in the form of 28 rewriting rules which transform every formula ϕ
into a wnfv disjunction φ of solved formulas, equivalent to ϕ in T ∗ad and such that φ is, either
the formula true, or the formula false, or a formula having at least one free variable and being
equivalent neither to true nor to false in T ∗ad. While the decision procedures given in Chapter
2 and 3 solve only propositions and can not express clearly the solutions of the free variables,
this algorithm can check formulas having free variables and being always true or false in T ∗ad and
gives either true or false. Moreover, the solutions of the free variables of φ are always expressed
in a clear and explicit way. We end this chapter by an example of solving a formula having free
variables and being always false in T ∗ad. Note that the results presented in this chapter have been
published in [14], [17], [21].

5.1 First order constraint in T ∗
ad

5.1.1 A convenient axiomatization of T ∗ad

Let F be an infinite set of function symbols containing the symbols {+,−, 0, 1} of respective
arities 2, 1, 0, 0. Let R be a set of relation symbols containing the 1-ary relation symbols num
and tree .
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Let a be a positive integer and t1, ..., tn terms. Let us denote by:

• Z the set of the integers,

• t1 < t2, the term < t1t2,

• t1 + t2, the term +t1t2,

• t1 + t2 + t3, the term +t1(+t2t3),

• 0.t1, the term 0,

• −a.t1, the term (−t1) + · · ·+ (−t1)︸ ︷︷ ︸
a

,

• a.t1, the term t1 + · · ·+ t1︸ ︷︷ ︸
a

,

• Σn
i=1ti, the term t1 + . . .+ tn + 0 with t1 + . . .+ tn the term t1 + . . .+ tn where

all the terms equal to 0 have been removed. For n = 0 we get the term 0.

The theory T ∗ad of the extension into trees of ordered additive rational numbers consists in
the set of the following propositions:

1 ∀x̄∀ȳ (tree fx̄ ∧ tree fȳ ∧ fx̄ = fȳ) →
∧

i xi = yi,
2 ∀x̄∀ȳ f x̄ = gȳ → num fx̄ ∧ num gȳ,
3 ∀x̄∀ȳ (

∧
i∈I num xi) ∧ (

∧
j∈J tree yj) → (∃!z̄

∧
k∈K(tree zk ∧ zk = tk(x̄, ȳ, z̄))),

4 ∀x∀y x < y → (num x ∧ num y),
5 ∀x∀y num x+ y ↔ num x ∧ num y,
6 ∀xnum − x↔ num x,
7 ∀x̄ tree hx̄,
8 ∀x∀y (num x ∧ num y) → x+ y = y + x,
9 ∀x∀y∀z (num x ∧ num y ∧ num z) → x+ (y + z) = (x+ y) + z,
10 ∀xnum x→ x+ 0 = x,
11 ∀xnum x→ x+ (−x) = 0,
12n ∀xnum x→ (nx = 0 → x = 0),
13n ∀xnum x→ ∃!y num y ∧ ny = x,
14 ∀xnum x→ ¬x < x,
15 ∀x∀y∀z num x ∧ num y ∧ num z → ((x < y ∧ y < z) → x < z),
16 ∀x∀y (num x ∧ num y) → (x < y ∨ x = y ∨ y < x),
17 ∀x∀y (num x ∧ num y) → (x < y → (∃z num z ∧ x < z ∧ z < y)),
18 ∀xnum x → (∃y num y ∧ x < y),
19 ∀xnum x → (∃y num y ∧ y < x),
20 ∀x∀y ∀z (num x ∧ num y ∧ num z) → (x < y → (x+ z < y + z)),
21 ∀xnumx↔ ¬tree x
22 0 < 1,
where n is a non-nul integer, f and g are two distinct function symbols of F , h ∈ F−{+,−, 0, 1},
x, y, z are variables, x̄ is a vector of variables xi, ȳ is a vector of variables yi, z̄ is a vector of distinct
variables zi and where tk(x̄, ȳ, z̄) is a term which begins by a function symbol fk ∈ F − {0, 1}
followed by variables taken from x̄ or ȳ or z̄, moreover, if fk ∈ {+,−} then tk(x̄, ȳ, z̄) contains
at least a variable of ȳ or z̄.
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This axiomatization is a more convenient version than those given in Chapter 4, in sense that
it introduces explicitly the relation symbol tree to distinguish trees from rational numbers which
will help us to present simple rules for solving first order constraints in T ∗ad.

From axioms 6,8,9,10,11 and 12 we have the following property

Property 5.1.1.1 For every k ∈ {1, ..., n} we have

T |= (Σk
i=1ai.xi = a0.1 ∧

k∧
i=1

num xi) ↔ (akxk = Σk
i=1,i6=k(−ai).xi + a0.1 ∧

k∧
i=1

num xi).

5.1.2 Example of first order constraint in T ∗ad

Let us now introduce an example of constraints in T ∗ad. Let us consider the following two-player
game: An ordered pair (n,m) of non-negative rational numbers is given and one after another
each player subtracts 1 or 2 from n or m but keeping n and m non-negative. The first player
who cannot play any more has lost.

Suppose that it is the turn of player A to play. A position (n,m) is called k-winning if, no
matter the way the other player B plays, it is always possible for A to win, after having made
at most k moves. The constraint defined in [7] expressing that a position x is k-winning is:

winningk(x) ↔


∃ymove(x, y) ∧ ¬(∃xmove(y, x)∧

¬(∃ymove(x, y) ∧ ¬(∃xmove(y, x) ∧ ¬(. . .∧
¬(∃ymove(x, y) ∧ ¬(∃xmove(y, x) ∧ ¬(false )) . . .)︸ ︷︷ ︸

2k


Each position (n,m) is represented by c(i, j) with c a function symbol of arity 2 and i, j ∈ Q.
The constraint move(x, y) is defined by

(∃i∃j x = c(i, j) ∧ y = c(i− 1, j) ∧ i > 1 ∧ j > 0)∨
(∃i∃j x = c(i, j) ∧ y = c(i− 2, j) ∧ i > 2 ∧ j > 0)∨
(∃i∃j x = c(i, j) ∧ y = c(i, j − 1) ∧ i > 0 ∧ j > 1)∨
(∃i∃j x = c(i, j) ∧ y = c(i, j − 2) ∧ i > 0 ∧ j > 2)∨
(¬(∃i∃j x = c(i, j) ∧ numi ∧ numj) ∧ x = y)


By replacing the definition of move in the constraint winningk(x), we have a first-order constraint
with one free variable x in the theory T ∗ad. Solving this constraint means finding the positions x
which are k-winning.

5.2 Blocks and quantified blocks in T ∗
ad

5.2.1 Blocks and solved blocks in T ∗ad

Suppose that the variables of V are ordered by a linear dense order relation without endpoints,
denoted by �. For every formula ϕ, the bounded variables are renamed such that in each
sub-formulas of ϕ we have x � y for each bounded variable x and each free variable y.

We call leader of the equation x0 = fx1...xn or x0 = x1, with f ∈ F − {0, 1}, the variable
x0. We call leader of the formula Σn

i=1ai.xi = a0.1, with ai ∈ Z for all i ∈ {0, ..., n}, the greatest
variable xk in the order � such that ak 6= 0.

Let f ∈ F and ai ∈ Z for all i ∈ {0, ..., n}. We call basic formula every conjunction α of
formulas of the form

• true, false,

• numx, tree x,
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• x = y, x = fy1...yn,

• Σn
i=1ai.xi = a0.1, Σn

i=1ai.xi < a0.1.

The formulas num x and tree x are called typing constraints.
Let α be a basic formula
(1) We say that num x is a consequence of α if α contains at least a sub-formula of the

following form

• num x, x = y ∧ num y, x = 0, x = 1,

• y = x ∧ num y, x = −y ∧ num y, y = −x ∧ num y,

• z = y + x ∧ num z, z = x+ y ∧ num z, x = y + z ∧ num z ∧ num y,

• Σn
i=1ai.xi = a0.1 or Σn

i=1ai.xi < a0.1 with x one of the xi.

(2) We say that tree x is a consequence of α if α contains at least a sub-formula of the
following form

• x = y ∧ tree y, y = x ∧ tree y,

• x = −y ∧ tree y, y = −x ∧ tree y,

• x = y+ z ∧ tree z, x = z+ y ∧ tree z, y = x+ z ∧ tree y ∧ num z, y = z+ x∧ tree y ∧ num z,

• tree x, x = hy1...yn, with h ∈ F − {+,−, 0, 1}.

(3) We call tree section of α, the conjunction αt of the sub-formulas of α of the form

• true, tree x,

• x = y or x = fy1...yn, with f ∈ F −{0, 1} and where x is such that tree x is a sub-formula
of α.

This section αt is formated if the left hand sides of the equations of αt are distinct and for each
equation of the form x = y of αt we have x � y.

(4) We call numeric section of α, the conjunction αn of the sub-formulas of α of the form

• true, false, num x,

• Σn
i=1ai.xi = a0.1, Σn

i=1ai.xi < a0.1,

• x = y, x = −y, x = y + z, where x is such that num x is a sub-formula of α.

This section αn is consistent if T ∗ad |= ∃x̄ αn with x̄ = var(αn). It is called formated if

• αn does not contain sub-formulas of the form x = y, x = −y, x = y + z, 0 = a01, 0 < a01,
with a0 ∈ Z,

• αn is consistent and each leader of an equation of αn occurs in only one equation of αn

and does not occur in the inequations of αn.

A variable u is called reachable in ∃x̄α if u is a free variable in ∃x̄α, or α has a sub-formula of
the form y = t(u) ∧ tree y with t(u) a term containing u and y a reachable variable. In the last
case, the equation y = t(u) is called reachable in ∃x̄α.

From axioms 1 and 2 of T ∗ad we have the following property
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Property 5.2.1.1 Let α be a basic formula. If all the variables of x̄ are reachable in ∃x̄ α then
T ∗ad |= ∃?x̄α.

We call bloc every basic formula α such that for each variable x in α, either num x or tree x
is a sub-formula of α and α does not contain sub-formulas of the form

• x = 0 ∧ tree x, x = 1 ∧ tree x,

• x = y ∧ num x ∧ tree y, x = y ∧ tree x ∧ num y,

• x = −y ∧ tree x ∧ num y, x = −y ∧ num x ∧ tree y

• x = y + z ∧ num x ∧ tree y, x = y + z ∧ num x ∧ tree z, x = hȳ ∧ num x,

• x = y + z ∧ tree x ∧ num y ∧ num z,

• Σn
i=1ai.xi = a0.1 ∧ tree xk, Σn

i=1ai.xi < a0.1 ∧ tree xk

with h ∈ F − {+,−, 0, 1}, k ∈ {1, ..., n} and ai ∈ Z for all i ∈ {0, ..., n}.
Since each variable x in a block has a type of the form num x or tree x, then every block α

can be divided into two disjoint sections: a tree section and a numeric section.
A block α without equations is called relational block. A block α without inequations and

where each variable has an occurrence in at least an equation of α is called equational block. A
block α is solved if its tree sections and numeric section are formated.

Since in a solved block the numeric section is consistent and according to axioms 3 and 13n,
we have the following property

Property 5.2.1.2 Let α be a solved block and x̄ the vector of the variables of α. We have
T ∗ad |= ∃x̄α.

5.2.2 Properties of the solved blocks in T ∗ad

Property 5.2.2.1 Let α be an equational solved block. Let x̄ be the vector of the leaders of the
equations of α. Let α∗ be the conjunction of typing constraints of α of the form tree x or num x
with x does not belong to x̄. We have

T |= α∗ → ∃!x̄ α

Proof. This property is a consequence of axioms 3 and 13n of T ∗ad. In fact, the equations of the
tree section of α have distinct leaders, i.e. distinct left hand sides, and since the equations of the
numeric section of α have distinct leaders which have an occurrence in one and only one equation
of the numeric section of α, then by transforming all the equations of this numeric section into
formulas of the form ak.xk =

∑
i=1,i6=k(−ai).xi + a0.1 where xk is the leader of the equation∑n

i=1 ai.xi = a0.1 (Property 5.1.1.1), then the left hand sides of these equations are distinct and
do not occur in other equations of the numeric section of α. Thus, in every model of T ∗ad and
for every instantiation of the variables which occur in the right hand sides by individuals which
respect the typing constraints of α, there exists a unique value for the leaders of these equations,
(axiom 13n). For each of these values and for each instantiation of the variables which are not
leader in equations of the tree section of α by values which respect the typing constraints of
α, there exists a unique value for the leaders of the equations of the tree section of α (axiom
3). Note that the instantiations are conditioned by the fact that they must respect the typing
constraints of α, which explains the meaning of the implication in this property. 2
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Example 5.2.2.2 Let x, y, z, v, w be variables such that x � y � z � v � w. We have

T |= num w → ∃!vxzy


x = fxyw ∧ y = x∧
2.z + 2.w = 1 ∧ 3.v + w = 0.1∧
tree x ∧ num v ∧ num w∧
tree y ∧ num z


This property can be written using Property 5.1.1.1 in the following form

T |= num w → ∃!vxzy


x = fxyw ∧ y = x∧
2.z = 1 + (−2).w ∧ 3.v = (−1).w∧
tree x ∧ num v ∧ num w∧
tree y ∧ num z


for each instantiation of w by numeric values, there exists one and only one value for v and z
(axiom 13n), and thus one and only one value for x and y (axiom 3). Note that if the variable
w is instantiated by tree values for example f(g(0)), then this formula is equivalent to false in
every model of T ∗ad according to axioms 5 and 21 and thus

T ∗ad 6|= ∃!vxzy


x = fxyw ∧ y = x∧
z + 2.w = 1 ∧ v + w = 0∧
tree x ∧ num v ∧ num w∧
tree y ∧ num z

 .
Property 5.2.2.3 Let α and β be two solved blocks having the same numeric section and the
same typing constraints. Let αt and βt be the tree sections of α and β. If T ∗ad |= α → β and
if αt and βt have the same set of variables which occur in a left hand side of an equation, then
T ∗ad |= α↔ β.

Proof. Since α and β have the same numeric section and the same typing constraints, then
there exists a formula δ such that α = δ ∧ αt and β = δ ∧ βt.

Let x̄ be the vector of the variables which occur in a left hand side of an equation of αt

(thus of βt also) and let X be the set of the variables of x̄. Since α and β are solved blocks,
then X ∩ var(δ) = ∅. Let γ be the conjunction of the typing constraints of α (thus of β also)
concerning variables which belong to x̄. Thus, the formula γ is a sub-formula of δ. According to
Property 5.2.2.1, we have T ∗ad |= γ → ∃!x̄αt and T ∗ad |= γ → ∃!x̄βt. Thus, T ∗ad |= δ → ∃!x̄ αt and
T ∗ad |= δ → ∃!x̄ βt.

Knowing T ∗ad |= α → β, i.e. T ∗ad |= ∀ȳ∀x̄ δ ∧ αt → δ ∧ βt, with ȳx̄ the vector of the variables
of α ∧ β, then the following equivalences are true in T ∗ad

∀ȳ∀x̄ δ ∧ αt → δ ∧ βt,
↔ ∀ȳ¬(∃x̄ δ ∧ αt ∧ ¬(δ ∧ βt)),
↔ ∀ȳ¬(δ ∧ (∃x̄ αt ∧ ¬βt)), because X ∩ var(δ) = ∅
↔ ∀ȳ¬(δ ∧ ¬(∃x̄ αt ∧ βt)) because T ∗ad |= δ → ∃!x̄ αt

and using corollary 3.1.0.8 (chapter 3),
↔ ∀ȳ¬(δ ∧ ¬(∃x̄ βt ∧ αt)),
↔ ∀ȳ¬(δ ∧ (∃x̄ βt ∧ ¬αt)), because T ∗ad |= δ → ∃!x̄ βt

and using corollary 3.1.0.8,
↔ ∀ȳ¬(∃x̄ δ ∧ βt ∧ ¬(δ ∧ αt)),
↔ ∀ȳ∀x̄ δ ∧ βt → δ ∧ αt.

Thus, we have T ∗ad |= (α→ β) ↔ (β → α). Since T ∗ad |= α→ β, we have T ∗ad |= α↔ β. 2
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5.2.3 Decomposition of quantified blocks in T ∗ad

Let ψ be a formula. Let x̄ be a vector of variables and α a solved block such that for all
unreachable quantified variable u in ∃x̄α and all reachable quantified variable v in ∃x̄α we have
u � v. We call decomposition of the formula ∃x̄α ∧ ψ the formula

∃x̄1 α1 ∧ (∃x̄2 α2 ∧ (∃x̄3 α3 ∧ ψ))), (5.1)

obtained as follows : Let X be the set of the variables in x̄. Let us decompose the set X into
two disjoint subsets: Xr (the set of the elements of X which are reachable in ∃x̄α) and Xu. Let
Lead be the set of the leaders of the equations of α. We have:
− x̄1 is the vector of the variables of Xr.
− x̄2 is the vector of the variables of Xu − Lead.
− x̄3 is the vector of the variables of Xu ∩ Lead.
− α1 is of the form α1

1 ∧α1
2 where α1

1 is the conjunction of all the equations in ∃x̄α whose leader
is reachable, α1

2 is the conjunction of all the typing constraints of α which concern variables of
var(α1

1).
− α2 is of the form α2

1 ∧α2
2 where α2

1 is the conjunction of all the inequations of α and α2
2 is the

conjunction of all the typing constraints of α which do not concern variables of x̄3.
− α3 is of the form α3

1 ∧ α3
2 where α3

1 is the conjunction of the other equations and α3
2 is

the conjunction of all the typing constraints of α which concern the variables of var(α3
1). The

restriction on the order � of the quantified unreachable and reachable variables is due to an
aim to get as leaders of the equations of the numeric section of α unreachable variables. If one
quantified leader is reachable then we deduce that all the quantified variables of this equation
are reachable.

Let A be the set of the solved blocks. Let A1 be the set of the formulas of the form ∃x̄1α1,
where α1 is a solved equation block and all the variables of x̄1 are reachable in ∃x̄1α1. Let A2

be the set of solved relation blocks

Property 5.2.3.1 Let ∃x̄1α1 be a formula without free variables which belongs to A1. We have
x̄1 = ε and α1 = true.

Proof. Since the formula ∃x̄1α1 has no free variables, then there exists no reachable variables
in ∃x̄1α1. Thus, according to the definition of the set A1 we have x̄1 = ε. Thus, the formula
∃x̄1α1 is equivalent in T ∗ad to the formula without free variables α1. According to the definition
of the set A1, the formula α1 is a solved block. Since this solved block does not contain free
variables then it is the formula true. 2

In Chapter 4, we have shown that T ∗ad is zero-infinite-decomposable. Thus, we have the
following properties

Property 5.2.3.2 If ∃x̄1α1 ∈ A1 then T ∗ad |= ∃?x̄1 α1 and for every free variable y in ∃x̄1α1, at
least one of the following properties holds:

• T ∗ad |= ∃?yx̄1 α1,

• there exists a formula ψ(u) ∈ Ψ(u) such that T ∗ad |= ∀y (∃x̄1 α1) → ψ(y),

Property 5.2.3.3 If α2 ∈ A2, then for every x2 we have T ∗ad |= ∃Ψ(u)
o∞ x2 α2.

Property 5.2.3.4 If α2 ∈ A2, then for every x2, the formula ∃x2α2 is equivalent in T ∗ad to a
formula which belongs to A2.
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Property 5.2.3.5 For every decomposed formula of the form (5.1) we have: ∃x̄1α1 ∈ A1, α2 ∈
A2, α3 ∈ A and T ∗ad |= ∀x̄2 α2 → ∃!x̄3α3.

Proof. Let ∃x̄1α1∧ (∃x̄2α2∧ (∃x̄3α3∧φ)) be the decomposed formula of ∃x̄α∧φ. According to
the construction of the sets x̄1, x̄2, x̄3, α1, α2 and α3 defined in Definition 5.2.3, it is clear that
∃x̄1α1 ∈ A1 and α2 ∈ A2. Let us show now that ∀x̄2α2 → ∃!x̄3α3. Since α2 contains the typing
constraints of all the variables which occur in α and do not occur in x̄3 and since x̄3 contains the
leaders of the equations of α3, then according to Property 5.2.2.1 we have T ∗ad |= α2 → ∃!x̄3α3,
i.e. ∀x̄2 α2 → ∃!x̄3α3 2

Example 5.2.3.6 Let v, w, x, y, z be variables such that w � y � z � x � v. Let us decompose
the following formula in T ∗ad

∃wxyz
v = fvx ∧ w + 2.x+ (−2).z = 1 ∧ y + 3.z = 0.1∧
z < 1 ∧ 3.z + 2.x < 0.1∧
tree v ∧ num w ∧ num x ∧ num y ∧ num z

 (5.2)

the reachable variables of this formula are v and x. Thus, we have Xacc = {v, x}, Xinacc =
{w, y, z} and Lead = {v, w, y}. Since w � y � z � x, then (5.2) is equivalent to the following
decomposed formula

∃x v = fvx ∧ tree v ∧ num x∧∃z z < 1 ∧ 3.z + 2.x < 0.1 ∧ num z ∧ numx ∧ tree v∧[
∃wy w+2.x+(−2).z=1 ∧ y+3.z=0.1∧
num w ∧ num x ∧ num y ∧ num z)

] 
 .

Note that the elements of A1 does not accept elimination of quantifiers, since the variables of
x̄1 are reachable in ∃x̄1 α1. In fact, in the formula ∃x v = fvx the quantification ∃x can not be
eliminated in T ∗ad.

In all what follows we will use the notations x̄1, x̄2, x̄3, α1, α2,α3 to refer to the decomposition
of the formula ∃x̄α.

5.3 Solving first order constraints in T ∗
ad

5.3.1 Working formulas and solved formulas

Definition 5.3.1.1 A normalized formula ϕ of depth d ≥ 1 is a formula of the form

¬(∃x̄ α ∧
∧
i∈I

ϕi), (5.3)

with I a finite possibly empty set, α a basic formula and the ϕi normalized formulas of depth di

and d = 1 + max{0, d1, ..., dn}.

Of course we have the following property

Property 5.3.1.2 Every formula is equivalent in T ∗ad to a normalized formula.
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Definition 5.3.1.3 A working formula is a normalized formula in which all the occurrences of
¬ are of the form ¬k with k ∈ {0, ..., 9} and such that each occurrence of a sub-formula of the
form

φ = ¬k(∃x̄ αc ∧ αp ∧
∧
i∈I

ϕi), (5.4)

has αp = true if k = 0 and satisfies the first k conditions of the following condition list if
k > 0. Here αp is a solved block and is called propagated constraint section, αc is a basic formula
and is called core constraint section, the ϕi are working formulas, and in the conditions: βp ∧ βc

is the conjunction of the equations and relations of the immediate top-working formula ψ of φ if
it exists, i.e. ψ = ¬k(∃ȳβc ∧ βp ∧ φ ∧

∧
j∈J φj) with φj working formulas.

1. if ψ exists then T |= αp ∧ αc → βp ∧ βc, and the tree-sections of αp and βc ∧ βp have the
same set of left-hand side of equations,

2. the tree-section of αp ∧αc is formatted and the formula αp ∧αc does not contain ¬numx∧
numx for any variable x,

3. αp ∧ αc is a block,

4. the numeric-section of αp ∧ αc is consistent, and we have u � v for u any unreachable
variable in x̄ and v any reachable variable in x̄,

5. αp ∧ αc is a solved block,

6. αp is the formula βc ∧ βp if ψ exists, and is the formula true otherwise. The formula αc

is a solved block and for each relation numx (or ¬numx) in αp, if x does not occur in an
equation or inequation of αc then numx (resp. ¬numx) does not occur in αc,

7. (∃x̄ αc) is decomposable into (∃x̄1 αc1 ∧ (∃x̄2 αc2 ∧ (∃ε true))),

8. (∃x̄ αc) is decomposable into (∃x̄1 αc1 ∧ (∃ε αc2 ∧ (∃ε true))),

9. (∃x̄ αc) is decomposable into (∃x̄1 αc1 ∧ (∃ε true ∧ (∃ε true))).

The intuitions behind this definition come from an aim to be able to control the execution of our
rewriting rules according to each value of k in a working formula. We strongly insist in the fact
that ¬k does not mean that the normalized formula satisfies only the kth condition but all the
conditions i with 1 ≤ i ≤ k.

We call initial working formula a working formula of the form

¬6(∃ε true ∧
∧
i∈I

ϕi)

with ϕi working formulas where all negation symbols ¬k have k = 0 and all propagated constraint
sections are reduced to the formula true. We call final working formula a formula of the form

¬7(∃ε true ∧
∧
i∈I

¬8(∃x̄i α
c
i ∧ α

p
i ∧

∧
j∈Ji

¬9(∃ȳij β
c
ij ∧ β

p
ij))), (5.5)

where the βc
ij are different from the formula true.
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Definition 5.3.1.4 A general solved formula is a formula of the form

∃x̄1 α1 ∧ α2 ∧
∧
i∈I

¬(∃ȳ1
i β

1
i ), (5.6)

where ∃x̄1 α1 ∈ A1, α2 ∈ A2, ∃ȳ1
i β

1
i ∈ A1, all the α1 ∧ α2 ∧ β1

i are solved blocks and all the β1
i

are different from true.

According to the properties of ¬8 and ¬9, in the final working formula (5.5), αp
i = true and

βp
ij = αp

i ∧ αc
i . Thus, the formula (5.5) is equivalent in T to the following disjunction of general

solved formulas ∨
i∈I

(∃x̄i α
c
i ∧

∧
j∈Ji

¬(∃ȳij β
c
ij)) (5.7)

Thus, we have the following property

Property 5.3.1.5 Every working final formula of the form (5.5) is equivalent in T ∗ad to a dis-
junction (5.7) of general solved formulas.

Property 5.3.1.6 Let ϕ be a working formula of the form

¬k(∃x̄ αc ∧ αp ∧
∧
i∈I

φi)

with 6 ≤ k ≤ 9 and φi working formulas. We have

T |= ¬(∃x̄ αc ∧ αp ∧
∧
i∈I

φ∗i ) ↔ ¬(αp ∧ (∃x̄ αc ∧
∧
i∈I

φ∗i ))

with φ∗i the normalized formula obtained from φi by replacing all ¬k by ¬.

Proof Let ψ - if it exists - be the immediate top-working formula of ϕ. Thus, ψ is of the form

¬k(∃ȳβc ∧ βp ∧ ϕ ∧
∧
j∈J

φ′j)

with φ′j working formulas. According to Definition 5.3.1.3, since k ≥ 6 then the normalized
formula satisfies the k first conditions of this definition and thus according to the sixth point of
this definition we have two cases:

(1) if φ does not exists, then αp is the formula true according to the sixth condition of
Definition 5.3.1.3. Thus, the property is true.

(2) if φ exists, then αp = βp ∧ βc according to the sixth condition of Definition 5.3.1.3. Since
the variables of x̄ can not occur in βc ∧βp, then these variables can not occur in αp, thus we can
lift the formula αp before the quantification ∃x̄ and thus the property is true.

Let us present now one of the most important property in T ∗ad which shows the differences
between the decision procedures defined in Chapter 2 and 3 and an algorithm solving general
first order constraints in T ∗ad.

Property 5.3.1.7 Let ϕ be a general solved formula of the form (5.6). If ϕ has no free variables
then ϕ is the formula true, otherwise neither T |= ϕ nor T |= ¬ϕ
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Proof.
Let ϕ be a general solved formula of the form

∃x̄1 α1 ∧ α2 ∧
∧
i∈I

¬(∃ȳ1
i β

1
i ), (5.8)

where ∃x̄1 α1 ∈ A1, α2 ∈ A2, ∃ȳ1
i β

1
i ∈ A1, all the α1 ∧ α2 ∧ β1

i are solved blocks and all the β1
i

are different from true. Two cases arise:
Case 1: Let us show that if ϕ has no free variables then ϕ is the formula true. Since ϕ has no

free variables then ∃x̄1 α1 ∧α2 has no free variables. Since ∃x̄1 α1 ∈ A1 and has no free variables
then according to Property 5.2.3.1 the formula (5.8) is equivalent in T to the following formula
without free variables

α2 ∧
∧
i∈I

¬(∃ȳ1
i β

1
i ), (5.9)

Since α2 ∈ A2 and α2 has no free variables then according to the definition of the set A2 we have
α2 = true. Thus, the preceding formula is equivalent in T ∗ad to the following formula without
free variables ∧

i∈I

¬(∃ȳ1
i β

1
i ). (5.10)

Since ∃ȳ1
i β

1
i ∈ A1 and has no free variables, then using Property 5.2.3.1, we deduce that ∃ȳ1

i β
1
i =

∃εtrue. But according to the condition of the formula (5.8) all the formulas β1
i are different from

true and thus I must be the empty set. Thus, the preceding formula is equivalent to true in T ∗ad.
Case 2: if ϕ has at least one free variable, then let us show that there exists at least a model

M of T ∗ad and two distinct instantiations ϕ′ and ϕ′′ of ϕ by individuals of M such that

M |= ¬ϕ′ and M |= ϕ′′.

Let us choose for example for M the standard model of T ∗ad given in Chapter 4.24

(1) Let us show that ϕ′ exists. Let z be a free variable of ϕ:

• If z occurs in the formula α1∧α2 then since ∃x̄1 α1 ∈ A1 and α2 ∈ A2, the formulas α1 and
α2 are solved blocks, thus all the variables are typed, thus numz or ¬numz is a sub formula
of α1 ∧ α2. To make false ϕ′ it is enough to instantiate the free variable z by an element
of Q if ¬numz is a sub formula of α1 ∧ α2 ; and by h if numz is a sub formula of α1 ∧ α2

with h ∈ F − {0, 1} a 0-ary function symbol, i.e. a tree constant. By this instantiation ϕ′,
we make a contradiction in the typing of z, thus M |= ¬ϕ′.

• Else, there exists k ∈ I such that the formula ∃ȳ1
k β

1
k with k ∈ I has at least one free

variable. Since ∃ȳ1
k β

1
k ∈ A1, then β1

k is a solved block then according to Property 5.2.1.2
there exists an instantiation ∃ȳ1

k β
′1
k of the free variables of ∃ȳ1

k β
1
k such that M |= ∃ȳ1

k β
′1
k

thus M |= ¬(∃x̄1 α1 ∧ α2 ∧
∧

i∈I ¬(∃ȳ1
i β

1
i )), thus M |= ¬ϕ′.

(2) Let us show now that there exists ϕ′′ such that M |= ϕ′′. The formula ϕ is of the form

∃x̄1 α1 ∧ α2 ∧
∧
i∈I

¬(∃ȳ1
i β

1
i ), (5.11)

where ∃x̄1 α1 ∈ A1, α2 ∈ A2, ∃ȳ1
i β

1
i ∈ A1, all the α1 ∧ α2 ∧ β1

i are solved blocks and all the β1
i

are different from true.
24This model has as domain the set of finite or infinite trees labeled by Q ∪ F and such that each sub-tree

labeled by Q ∪ {+,−} is evaluated in Q and reduced to a leaf labeled by Q.
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Let α2∗ be the formula α2 in which we have removed the typing constraints which concern the
leaders of the equations of α1. Let us also transform the equations of the numeric section of α1

and β1
i by moving to the right hand sides the terms containing variables that are not leaders (see

Property 5.1.1.1). The preceding formula is equivalent in T ∗ad to

∃x̄1 α1 ∧ α2∗ ∧
∧
i∈I

¬(∃ȳ1
i β

1
i ), (5.12)

where the equations of the numeric section of α1 (respectively β1
i ) have distinct left hand sides

which have no occurrences in other right hand sides of equations of the numeric section of α1

(respectively β1
i ). This is due to the fact that ∃x̄1α1 ∈ A1 and ∃ȳ1

i β
1
i ∈ A1, and thus α1 and β1

i

are solved. Since ∃ȳ1
i β

1
i ∈ A1 then β1

i is a solved block, thus it is consistent and different from
false. Moreover since β1

i are different from true then each β1
i has at least a variable. According

to the definition of A1 all the variables of ȳ1
i are reachable and thus there exists at least one free

variable in each β1
i according to the definition of the reachable variables. Since α1 ∧ α2∗ ∧ β1

i

are solved blocks then they are consistent and thus there exists an instantiation of ∃x̄1 α1 ∧ α2∗

such that this instantiated formula is true in M (Property 5.2.1.2), thus according to Property
5.2.3.3 there exists an infinity of instantiations of the variables of α2∗ which make it true in M
(and not zero because there exists at least an instantiation since the blocks are solved). For each
value of these instantiations and for all instantiations of the right hand sides of the equations
of the numeric section of α1, there exists a value for the leaders of these equations because the
leaders of the equations of α1 do not occur in α2∗ ( α1 ∧ α2 ∧ β1

i are solved blocks). For each of
these values and instantiations of the variables of the equations of the tree section of α1 which
are not leaders, there exists a value for the leaders of these equations (axiom 3). Then, there
exists an infinity of instantiations of the free variables of ∃x̄1 α1∧α2 which make the instantiated
formula true in M . Let us show now that there exists from this infinity of instantiations, an
instantiation which makes false each formula of the form ∃ȳ1

i β
1
i and thus makes true ϕ′′. In each

sub-formula of the form ∃ȳ1
i β

1
i the leaders of the equations of the numeric section of β1

i do not
occur in the equations and inequations of α1 ∧ α2 because α1 ∧ α2 ∧ β1

i are solved blocks. Since
for each instantiation of the right hand sides of the equations of the numeric section of β1

i there
exists a value for the leaders. Thus, it is enough to choose a different value to these leaders to
make false all the ∃ȳ1

i β
1
i . This is possible because the domain M is infinite and more exactly Q

is infinite. For each instantiation of the variables which are not leaders in the tree section of β1
i

there exists a unique value for the leaders, thus it is enough to take another value to make false
all the ∃ȳ1

i β
1
i . This is possible because the domain of the trees is infinite and more exactly the

set of the function symbols of F is infinite. Thus there exists an instantiation which make true
∃x̄1α1 ∧α2 and false each sub-formula of the form ∃ȳ1

i β
1
i . Thus, this instantiation is the formula

ϕ′′.

Property 5.3.1.8 Every general solved formula is equivalent in T to a boolean combination of
formulas of the form ∃x̄1α1∧α2, with ∃x̄1α1 ∈ A1 and α2 ∈ A2, which do not accept elimination
of quantifiers.

Proof. Let ϕ be the following general solved formula∨
i∈I

(∃x̄iα
c
i ∧

∧
j∈Ji

¬(∃ȳijβ
c
ij)) (5.13)

where the βc
ij are different from true. The formula ϕ is extracted from a final working formula
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of the form
¬7(∃εtrue

∧
i∈I

¬8(∃x̄iα
c
i ∧ α

p
i ∧

∧
j∈Ji

¬9(∃ȳijβ
c
ij ∧ β

p
ij))

According to the conditions of ¬8, we have αp
i = true and all the variables of x̄i are reachable in

∃x̄iα
c
i . Moreover, ∃x̄iα

c
i is decomposed in T ∗ad into ∃x̄iα

c1
i ∧αc2

i , with ∃x̄iαc1i ∈ A1 and αc2
i ∈ A2.

According to the conditions of ¬9, we have βp
ij = αc

i ∧α
p
i = αc

i , the βc
ij ∧β

p
ij are solved blocks

and the ∃ȳijβ
c
ij belong to A1. Thus, we deduce that βc

ij∧αc
i are solved blocks. Since each variable

in x̄i is reachable in ∃x̄iα
c
i , it remains reachable in ∃x̄iȳijα

c
i ∧ βc

ij . Since each variable y in ȳij

is reachable in ∃ȳijβ
c
ij , two cases arise: (1) y is reachable without using variables in x̄i, in this

case, y remains reachable in ∃x̄iȳijα
c
i ∧ βc

ij , (2) y is reachable using variables in x̄i, in this case,
since all variables in x̄i are reachable in ∃x̄iȳijα

c
i ∧ βc

ij , then y is still reachable in this formula.
Thus, the formulas ∃x̄iȳijα

c
i∧βc

ij can be decomposed into ∃x̄iȳijα
c1
i ∧βc

ij∧αc2
i , with ∃x̄iȳijα

c1
i ∧

βc
ij ∈ A1 and αc2

i ∈ A2.
According to Property 5.2.1.1, the formula (5.13) is equivalent in T to the formula∨

i∈I

((∃x̄iα
c
i ) ∧

∧
j∈Ji

¬(∃x̄iȳijα
c
i ∧ βc

ij))

We have proved that each quantified conjunction is of the form ∃x̄1α1∧α2 where x̄1α1 ∈ A1 and
α2 ∈ A2. This property is then proved.2

5.3.2 Main idea

The general algorithm for solving first-order constraints in T uses a system of rewriting rules.
The main idea is to transform an initial working formula of depth d into a final working formula
of depth less than or equal to three. The transformation is done in two steps:

(1) The first step is a top-down simplification and propagation. In each sub-working formula,
αc ∧ αp is transformed into a solved block, then ∃x̄αc is decomposed into three parts. The
third part is eliminated and added to the core-constraint section of the immediate sub-working
formulas using a special property of the quantifier ∃!. The constraints of the two other parts in
αp are propagated to the propagated-constraint section of the immediate sub-working formulas.
In this step, the rules 1 to 24 are applied and transform the initial working formula into a working
formula where each negation symbol is of the form ¬7.

(2) The second step is a bottom-up simplification and elimination of quantifiers. This step
is done by the rules 25 to 28. In each sub-working formula of depth one or two, the rule 25
eliminates quantified variables of the second part of the decomposition (the third one had been
already removed in the first step). The rule 26 eliminates the constraints of the second part
in the deepest level. Each sub-working formula of depth 3 is transformed step by step to a
conjunction of working formulas of depth 2 by the rule 28 using a property of the quantifier ∃?.
The transformations in this step can create new sub-working formulas where the first step needs
to be done. At the end of the transformations, we obtain a final working formula of depth less
than or equal to 3.

5.3.3 The rewriting rules

We present now the rewriting rules which transform an initial working formula to a final working
formula, which is equivalent in T ∗ad. To apply the rule p1 =⇒ p2 to the working formula p means
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to replace in p, a sub-formula p1 by the formula p2, by considering that the connector ∧ is
associative and commutative.

1 ¬1(∃ūnum x ∧ tree x ∧ α ∧ ϕ) =⇒ true
2 ¬1(∃ū x = fȳ ∧ x = gz̄ ∧ tree x ∧ α ∧ ϕ) =⇒ true
3 ¬1(∃ū x = x ∧ α ∧ ϕ) =⇒ ¬1(∃ū α ∧ ϕ)
4 ¬1(∃ū y = x ∧ tree x ∧ α ∧ ϕ) =⇒ ¬1(∃ū x = y ∧ tree x ∧ α ∧ ϕ)

5 ¬1

[
∃ū x = fy1...yn ∧ x = fz1...zn∧
tree x ∧ α ∧ ϕ

]
=⇒ ¬1

[
∃ū x = fy1...yn ∧

∧
i yi = zi∧

tree x ∧ α ∧ ϕ

]

6 ¬1

[
∃ū x = y ∧ x = fz1...zn∧
tree x ∧ tree y ∧ α ∧ ϕ

]
=⇒ ¬1

[
∃ū x = y ∧ y = fz1...zn∧
tree x ∧ tree y ∧ α ∧ ϕ

]
7 ¬1(∃ū x = y ∧ x = z ∧ tree x ∧ α ∧ ϕ) =⇒ ¬1(∃ū x = y ∧ y = z ∧ tree x ∧ α ∧ ϕ)
8 ¬4(∃ū 0 = 0.1 ∧ α ∧ ϕ) =⇒ ¬4(∃ū α ∧ ϕ)
9 ¬4(∃ū 0 < a0.1 ∧ α ∧ ϕ) =⇒ ¬4(∃ū α ∧ ϕ)

10 ¬4

[
∃ū x = y∧
num x ∧ num y ∧ α ∧ ϕ

]
=⇒ ¬4

[
∃ū x+ (−1).y = 0.1∧
num x ∧ num y ∧ α ∧ ϕ

]

11 ¬4

[
∃ū x = −y∧
num x ∧ num y ∧ α ∧ ϕ

]
=⇒ ¬4

[
∃ū x+ y = 0.1∧
num x ∧ num y ∧ α ∧ ϕ

]

12 ¬4

[
∃ū x = y + z ∧ num x∧
num y ∧ num z ∧ α ∧ ϕ

]
=⇒ ¬4

[
∃ū x+ (−1).y + (−1).z = 0.1∧
num x ∧ num y ∧ num z ∧ α ∧ ϕ

]

13 ¬4

 ∃ūΣn
i=1ai.xi = a0.1∧

Σn
j=1bj .xj = b0.1∧∧
num x ∧ α ∧ ϕ

 =⇒ ¬4

 ∃ūΣn
i=1ai.xi = a0.1∧

Σn
i=1(bkai − akbi).xi = (bka0 − akb0).1∧∧
num x ∧ α ∧ ϕ


14 ¬4

 ∃ūΣn
i=1ai.xi = a0.1∧

Σn
j=1bj .xj < b0.1∧∧
num x ∧ α ∧ ϕ

 =⇒ ¬4

 ∃ūΣn
i=1ai.xi = a0.1∧

Σn
i=1λ(bkai − akbi).xi < (bka0 − akb0).1∧∧
num x ∧ α ∧ ϕ


15 ¬1(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬2(∃x̄ αc ∧ αp ∧ ϕ)
16 ¬2(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬1(∃x̄num z ∧ αc ∧ αp ∧ ϕ)
17 ¬2(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬1(∃x̄ tree z ∧ αc ∧ αp ∧ ϕ)

18 ¬2(∃x̄ αc ∧ αp ∧ ϕ) =⇒
[
¬1(∃x̄num z ∧ αc ∧ αp ∧ ϕ)∧
¬1(∃x̄ tree z ∧ αc ∧ αp ∧ ϕ)

]
19 ¬2(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬3(∃x̄ αc ∧ αp ∧ ϕ)
20 ¬3(∃x̄ αc ∧ αp ∧ ϕ) =⇒ true
21 ¬3(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬4(∃x̄ αc ∧ αp ∧ ϕ)
22 ¬4(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬5(∃x̄ αc ∧ αp ∧ ϕ)

23 ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬5(∃ȳ βc ∧ βp ∧ ψ)

]
=⇒ ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬6(∃ȳ γc ∧ γp ∧ ψ)

]

24 ¬6

[
∃x̄ αc ∧ αp∧∧

i ¬0(∃ȳiβ
c
i ∧ β

p
i ∧ ϕi)

]
=⇒ ¬7

[
∃x̄1x̄2 αc1 ∧ αc2 ∧ αp∧∧

i ¬1(∃ȳix̄
3γc

i ∧ γ
p
i ∧ ϕi)

]

25 ¬7

[
∃x̄ αc ∧ αp∧∧

i∈I ¬9(∃ȳiβ
c
i ∧ β

p
i )

]
=⇒ ¬8

[
∃x̄1αc1 ∧ αc2∗ ∧ αp∧∧

i∈I′ ¬9(∃ȳiβ
c
i ∧ β

p∗
i )

]

26 ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬8(∃ȳβc ∧ βp)

]
=⇒

[
¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬9(∃ȳβc1 ∧ βp))∧∧

i∈I ¬1(∃x̄ȳβp ∧ βc1 ∧ βc2∗
i ∧ ϕ0)

]
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27 ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬9(∃εtrue ∧ βp)

]
=⇒ true

28 ¬7


∃x̄ αc ∧ αp ∧ ϕ∧

¬8

 ∃ȳ βc ∧ βp∧∧
i∈I

¬9(∃z̄i γc
i ∧ γ

p
i )


 =⇒

 ¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬8(∃ȳ βc ∧ βp))∧∧
i∈I

¬6(∃x̄ȳz̄i δc
i ∧ δ

p
i ∧ ϕ0)


In all these rules, α is a basic formula, ϕ and ψ are conjunctions of working formulas.
In the rules 1 to 14, the equations and relations in αc and αp are mixed by considering the

connector ∧ associative and commutative. In these rules, except the rule 6, all modifications in
the right hand side are done in αc, since αp is a solved block.

In the rule 2, f and g are two distinct function symbols taken from F . In the rules 4, 6, 7
x � y This condition prevents infinite loops and makes the procedure terminating. In the rule
5, the equation x = fz1...zn does not belong to αp. In the rule 6, if the equation x = fz1...zn
belongs to αp, then x = y ∧ ¬numy is moved to αp. In the rule 7, the equation x = z does not
belong to αp.

We recall that the notation 0.1 in the rule 8 means the term 0. In the rule 9, a0 > 0. In the
rules 13 and 14 the variable xk is the leader of the equation Σiaixi = a01 and bk 6= 0. Moreover
the equation Σibi.xi = b0.1 does not belong to αp. In the rule 14, the relation Σibi.xi < b0.1
does not belong to αp and λ = 1 if ak > 0 and λ = −1 otherwise.

In the rule 15, the tree section of αc∧αp is formatted and there is no sub-formula in αc∧αp of
the form numx∧¬numx. In the rule 16 respectively 17, the typing constraint numz, respectively
¬numz is not in αc ∧ αp and is a consequence of αc ∧ αp. In the rule 18, z does not have typing
constraint in αc ∧ αp and neither numz nor ¬numz is a consequence of αc ∧ αp.

In the rule 19, αc∧αp is a block. In the rule 20, the numeric section of αc∧αp is inconsistent.
In the rule 21, the unreachable variables in x̄ are renamed if necessary such that u � v for each
unreachable variable u and each reachable variable v in x̄ and the numeric section of αc ∧ αp is
consistent. The consistency can be verified for example by using the first step of the Simplex.
In the rule 22, αc ∧ αp is a solved block.

In the rule 23, γc is obtained from βc as follows: for all variable x ∈ var(βc), we add all the
relations numx or ¬numx which are in βp but not in βc, and for all the variables y which do
not occur in an equation or inequation of βc we remove all relations numy or ¬numy which are
both in βc and βp. The formula γp is the formula αp ∧ αc.

In the rule 24, ∃x̄αc is decomposed to ∃x̄1αc1 ∧ (∃x̄2αc2 ∧ (∃x̄3αc3)), γc
i = βc

i ∧ αc3 and
γp

i = βp
i ∧ αc1 ∧ αc2 ∧ αp.

The four rules 25, 26, 27 and 28 can not be applied on the occurrence of ¬7 of the first level
of the general working formula. In the rule 25, I ′ is the set of i ∈ I such that βc

i does not
contain occurrences of any variables in x̄2. The formula αc2∗ is such that T |= (∃x̄2αc2) ↔ αc2∗

and is computed using the Fourier quantifier elimination. The propagated-constraint section
βp∗

i = αc1 ∧ αc2∗ ∧ αp.
In the rule 26, ϕ is such that every negation symbol ¬k has k ≥ 6, ϕ0 is obtained from ϕ

by replacing all occurrences of ¬k by ¬0 and all propagated-constraint sections by true. Let β2

the formula obtained from βc2 by removing the multiple occurrences of typing constraints and
for all the variables y which do not occur in an inequation of βc2 we remove all relation numy or
¬numy which are both in βc1 and βc2. If β2 is the formula true then I = ∅, otherwise the βc2∗

i

with i ∈ I are obtained from β2 as follows: Since β2 ∈ A2 then it is of the form[
(
∧

`∈L numz`) ∧ (
∧

k∈K ¬numvk)∧
((
∧

j∈J

∑n
i=1 aij .xi < a0j .1) ∧

∧n
m=1 numxm)

]
,
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thus ¬β2 is of the form(
∨

`∈L ¬num z`) ∨ (
∨

k∈K numvk) ∨ (
∨n

m=1 ¬numxm)∨∨
j∈J((

∑n
i=1 aijxi = a0j .1 ∧

∧n
m=1 numxm)∨

(
∑n

i=1(−aij)xi < (−a0j).1 ∧
∧n

m=1 numxm))


Each element of this disjunction is a block and represents a formula βc2∗

i . Of course we have
T |= (¬β2) ↔

∨
i β

c2∗
i .

In the rule 28, I 6= ∅, ϕ is such that every negation symbol ¬k has k ≥ 6, ϕ0 is obtained
from ϕ by replacing all occurrences of ¬k by ¬0 and all propagated-constraint sections by true.
Moreover δp

i = αp and δc
i = γc

i ∧ βc ∧ αc.

Property 5.3.3.1 Every repeated application of the preceding rewriting rules on an initial work-
ing formula terminates and produces a wnfv final working formula equivalent in T ∗ad.

Proof, first part: Let us show that every repeated application of these rules on an initial
working formula terminates. Note that the rules 1...7 are applied on sub-working formulas which
begin by the symbol ¬1 without changing the value of this symbol. By the same way, the rules 8
...14 are applied on sub-working formulas which begin by the symbol ¬4. Let us then divide this
proof into three parts: (1) every application of the rules 1...7 on a working formula which begins
by ¬1 terminates, (2) every repeated application of the rules 8...14 on a sub-working formula
which begins by ¬4 terminates, (3) every repeated application of the rules 15 ... 28 terminates.

(1) Let us show that every application of the rules 1... 7 on a sub-working formula which
begins by ¬1(∃x̄α ∧ ϕ) terminates. Since the variables of V are ordered by a linear dense order
relation � without endpoints, then we can associate to each variable x a positive integer no(x),
such that x � y if no(x) > no(y). Let the 3-tuple (n1, n2, n3) where

• n1 is the number of equations of the form x = fy1...yn in α,

• n2 is the sum of the no(x) for all occurrences of a variable x in α,

• n3 is the number of equations of the form y = x with x � y in α.

for each rule, there exists a row i such that the application of the rules decreases or does not
change the values of nj , with 1 ≤ j < i, and decreases the value of ni. This row i is equal to 1 for
the rules (2) and (5), 2 for the rules (1), (3), (6) and (7), and 3 for the rule (4). To each sequence
of formulas obtained by finite application of the rules, we can associate a series of 3-tuples of the
form (n1, n2, n3) which is strictly decreasing in the lexicographic order. Since the ni are positive
integers, they can not be negative and thus this series is finite and the application of the rules
1...7 terminates.

(2) Let us show now that every application of the rules 8...14 on a sub-working formula
which begins by ¬4 terminates. This termination is evident since the rules 8 ...12 transform
the equations and inequations into a basic form and the rules 13 and 14 remove the double
occurrences of the leaders.

(3) Let us show now that every repeated application of the rules 15 ... 28 terminates. Starting
with an initial working formula of the form ¬6(∃εtrue ∧ ϕ), with ϕ a conjunction of working
formulas where all the negations are of the form ¬0, the rule 24 is the only one that can be
applied by changing the ¬6 to ¬7 and all the internal ¬0 to ¬1. According to what we have
shown every repeated application of the rules 1... 7 on a sub-working formula which begins
by ¬1 terminates. Then, the rule 15 changes ¬1 into ¬2. For every sub-working formula which
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begins by ¬2, the rules 16, 17 and 18 can be applied at most one time for each free variable which
has not yet a typing constraint in αc∧αp. These rules create new working formulas which begins
by ¬1. This loop is finite since we never add new untyped variables during the application of this
part of rules. Note also that every application of the rules 19 to 24 terminates. Concerning the
rules 25 and 27, they can be applied one and only one time on each sub-working formula. In the
rule 26, we replace a sub-working formula containing a sequence of ¬7¬8 by the same working
formula with a sequence ¬7¬9 and containing |I| working formulas where the sequence of ¬8 has
been removed. In the rule 28 we decrease the size of the depth of the working formula. Thus,
we can not apply infinitely these rules. This is a semi-formal proof ; we can make a better proof
using a big n-tuples due to the high number of rules.
Proof, second part: Let us show that the rules are correct in T ∗ad. The rules 1..14 are evident
in T ∗ad and come from the axiomatization of T ∗ad. In the rule 15, since the tree section of αc ∧ αp

is formated and does not contain sub-formulas of the form num x∧ tree x, the symbol ¬1 can be
changed into ¬2. Thus, this rule is correct.

In the rule 16, since num z is a consequence of αc∧αp, then the formula αc∧αp is equivalent
in T ∗ad to αc ∧ αp ∧ num z. Thus, this rule is correct. By the same way, we show the correctness
of the rules 17 and 18.

In the rule 20, since the numeric section of αc ∧ αp is inconsistent, then the formula αc ∧ αp

is equivalent in T ∗ad to false. Thus, this rule is correct.
The rules 19, 21 and 22 are correct because their conditions are sufficient to change their

negation symbols into ¬3,¬4,¬5 (respectively)
Correctness of the rule 23:

¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬5(∃ȳ βc ∧ βp ∧ ψ)

]
=⇒ ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬6(∃ȳ γc ∧ γp ∧ ψ)

]

where γc is obtained from βc as follows: for all variable x ∈ var(βc), we add all the relations
numx or ¬numx which are in βp but not in βc, and for all the variables y which do not occur in
an equation or inequation of βc we remove all relations numy or ¬numy which are both in βc

and βp. The formula γp is the formula αp ∧ αc.
We know that βc∧βp is equivalent to γc∧βp in T ∗ad. Thus, let βp

t be the tree section of βp and
βp

n the numeric section of βp. Let αcp
t be the tree section of αc ∧ αp and αcp

n the numeric section
of αc ∧ αp. According to the conditions of ¬5, αcp

t and βp
t have the same set of variables which

occur in the left hand sides of equations. We have also αcp
n = βp

n and T ∗ad |= βc ∧ βp → αc ∧ αp.
Thus

T |= γc ∧ βp → γc ∧ αc ∧ αp,

i.e.
T |= γc ∧ βp

t ∧ βp
n → γc ∧ αcp

t ∧ αcp
n ,

and thus
T |= γc ∧ βp

t ∧ αcp
n → γc ∧ αcp

t ∧ αcp
n .

Since the tree sections of γc ∧ βp
t and γc ∧ αcp

t have the same set of variables which occur in the
left hand sides of equation and according to Property 5.2.2.3, we have

T |= γc ∧ βp
t ∧ αcp

n ↔ γc ∧ αcp
t ∧ αcp

n ,

thus
T |= βc ∧ βp ↔ γc ∧ αc ∧ αp.
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Since γp = αc ∧ αp then the rule 23 is correct in T ∗ad.
Correctness of the rule 24:

¬6

[
∃x̄ αc ∧ αp∧∧

i ¬0(∃ȳiβ
c
i ∧ β

p
i ∧ ϕi)

]
=⇒ ¬7

[
∃x̄1x̄2 αc1 ∧ αc2 ∧ αp∧∧

i ¬1(∃ȳix̄
3γc

i ∧ γ
p
i ∧ ϕi)

]

with γc
i = βc

i ∧ αc3 and γp
i = βp

i ∧ αc1 ∧ αc2 ∧ αp.
According to Definition 5.3.1.3 of working formula, since we have the symbol ¬6 then βp

i =
αc ∧ αp. Thus, the left hand side of this rule is equivalent in T ∗ad to a formula of the form

¬(∃x̄ αc ∧ αp ∧
∧
i

¬(αc ∧ αp ∧ (∃ȳiβ
c
i ∧ ϕi))),

thus to
¬(∃x̄ αc ∧ αp ∧

∧
i

¬(∃ȳiβ
c
i ∧ ϕi)).

According to Property 5.3.1.6, the preceding formula is equivalent in T ∗ad to

¬(αp ∧ (∃x̄ αc ∧
∧
i

¬(∃ȳiβ
c
i ∧ ϕi))).

According to Definition 5.3.1.3 of working formula, since we have ¬6 then the conditions 4,5,6
of Definition 5.3.1.3 hold. Thus, the formula ∃x̄αc can be decomposed in T ∗ad. The preceding
formula is thus equivalent in T ∗ad to a formula of the form

¬(αp ∧ (∃x̄1αc1 ∧ (∃x̄2αc2 ∧ (∃x̄3αc3 ∧
∧
i

¬(∃ȳiβ
c
i ∧ ϕi))))),

with T ∗ad |= ∀x̄2αc2 → ∃!x̄3αc3. According to Corollary 3.1.0.8 of Chapter 3, the preceding
formula is equivalent in T ∗ad to

¬(αp ∧ (∃x̄1αc1 ∧ (∃x̄2αc2 ∧
∧
i

¬(∃x̄3ȳi α
c3 ∧ βc

i ∧ ϕi)))),

i.e. to

¬
[
∃x̄1x̄2 αc1 ∧ αc2 ∧ αp∧∧

i ¬(∃x̄3ȳi α
c3 ∧ βc

i ∧ αc1 ∧ αc2 ∧ αp ∧ ϕi)

]
.

This rule is thus correct in T ∗ad.
Correctness of the rule 25:

¬7

[
∃x̄ αc ∧ αp∧∧

i∈I ¬9(∃ȳiβ
c
i ∧ β

p
i )

]
=⇒ ¬8

[
∃x̄1αc1 ∧ αc2∗ ∧ αp∧∧

i∈I′ ¬9(∃ȳiβ
c
i ∧ β

p∗
i )

]

where I ′ is the set of i ∈ I such that βc
i does not contain occurrences of any variables in x̄2. The

formula αc2∗ is such that T ∗ad |= (∃x̄2αc2) ↔ αc2∗ and is computed using the Fourier quantifier
elimination. The propagated-constraint section βp∗

i = αc1 ∧ αc2∗ ∧ αp.
According to Definition 5.3.1.3 of working formula, since we have ¬9, then the sixth condition

of this definition holds, thus βp
i = αc ∧ αp. The left hand side of this rule is equivalent in T ∗ad to

a formula of the form

¬(∃x̄ αc ∧ αp ∧
∧
i

¬(αc ∧ αp ∧ (∃ȳiβ
c
i ∧ ϕi))),
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i.e. to

¬(∃x̄ αc ∧ αp ∧
∧
i

¬(∃ȳiβ
c
i ∧ ϕi)).

which according to Property 5.3.1.6 is equivalent in T ∗ad to a formula of the form

¬(αp ∧ (∃x̄ αc ∧
∧
i

¬(∃ȳiβ
c
i ∧ ϕi))).

According to Definition 5.3.1.3 of working formula, since we have ¬7, then the conditions 4,5,6 and
7 of this definition hold. Thus the formula ∃x̄αc can be decomposed in T ∗ad with ∃x̄3αc3 = ∃εtrue.
The preceding formula is thus equivalent in T ∗ad to

¬(αp ∧ (∃x̄1αc1 ∧ (∃x̄2αc2 ∧
∧
i

¬(∃ȳiβ
c
i ∧ ϕi)))).

Let us denote by I1, the set of the i ∈ I such that x2
n has no occurrences in ∃ȳ1

i β
c1
i . The preceding

formula is equivalent in T ∗ad to

¬(αp ∧ (∃x̄1αc1 ∧ αp ∧

∃x2
1...∃x2

n−1

(
∧

i∈I1 ¬(∃ȳ1
i β

c1
i ))∧

(∃x2
n α

c2 ∧
∧

i∈I−I1 ¬(∃ȳc1
i β

c1
i ))

)). (5.14)

According to the properties 3.1.0.4, 5.2.3.2 and 5.2.3.3, the formula (5.14) is equivalent in T ∗ad to

¬(αp ∧ (∃x̄1α1 ∧ αp ∧

∃x2
1...∃x2

n−1

(
∧

i∈I1 ¬(∃ȳ1
i β

c1
i ))∧

(∃x2
n α

c2)

)). (5.15)

According to Property 5.2.3.4, there exists αc2
n ∈ A2 such that T ∗ad |= (∃x2

n α
c2) ↔ αc2

n with
αc2

n ∈ A2. The preceding formula is thus equivalent in T ∗ad to

¬(αp ∧ (∃x̄1αc1 ∧ αp ∧ (∃x2
1...∃x2

n−1

∧
i∈I1

¬(∃ȳ1
i β

c1
i ) ∧ αc2

n ))),

i.e. to
¬(αp ∧ (∃x̄1αc1 ∧ αp ∧ (∃x2

1...∃x2
n−1 α

c2
n ∧

∧
i∈I1

¬(∃ȳ1
i β

c1
i )))).

By repeating the preceding steps (n − 1) time and by denoting by Ik the sets of the i ∈ Ik−1

such that x2
(n−k+1) has no occurrences in ∃ȳ1

i β
c1
i , the preceding formula is equivalent in T ∗ad to

¬(αp ∧ (∃x̄1αc1 ∧ αc2
1 ∧ αp ∧

∧
i∈In

¬(∃ȳ1
i β

c1
i ))),

i.e. to
¬(∃x̄1αc1 ∧ αc2

1 ∧ αp ∧
∧

i∈In

¬(∃ȳ1
i β

c1
i ∧ αc1 ∧ αc2

1 ∧ αp)).

This rule is thus correct in T ∗ad.
Correctness of the rule 26

¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬8(∃ȳβc ∧ βp)

]
=⇒

[
¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬9(∃ȳβc1 ∧ βp))∧∧

i∈I ¬1(∃x̄ȳβp ∧ βc1 ∧ βc2∗
i ∧ ϕ0)

]
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where ϕ is such that every negation symbol ¬k has k ≥ 6, ϕ0 is obtained from ϕ by replacing all
occurrences of ¬k by ¬0 and all propagated-constraint sections by true. Let β2 be the formula
obtained from βc2 by removing the multiple occurrences of typing constraints and for all the
variables y which do not occur in an inequation of βc2 we remove all relation numy or ¬numy
which are both in βc1 and βc2. If β2 is the formula true then I = ∅, otherwise the βc2∗

i with
i ∈ I are obtained from β2 as follows: Since β2 ∈ A2 then it is of the form[

(
∧

`∈L numz`) ∧ (
∧

k∈K ¬numvk)∧
((
∧

j∈J

∑n
i=1 aijxi < a0j) ∧

∧n
m=1 numxm)

]
,

thus ¬β2 is of the form(
∨

`∈L ¬num z`) ∨ (
∨

k∈K numvk) ∨ (
∨n

m=1 ¬numxm)∨∨
j∈J((

∑n
i=1 aijxi = a0j1 ∧

∧n
m=1 numxm)∨

(
∑n

i=1(−aij)xi < (−a0j)1 ∧
∧n

m=1 numxm))


Each element of this disjunction is a block and represents a formula βc2∗

i . Of course we have
T ∗ad |= (¬β2) ↔

∨
i β

c2∗
i .

Since we have ¬8, then according to Definition 5.3.1.3, the formula ∃ȳβc is equivalent in
T ∗ad to a decomposed formula of the form ∃ȳβc1 ∧ βc2 with ∃ȳβc1 ∈ A1. Let β2 be the formula
obtained from βc2 by removing from βc2 the multiple occurrences of the typing constraints and
by removing from βc2 all the relations num y or tree y which are both in βc1 and βc2 for every
variable y which has no occurrences in the inequations of βc2. The left hand side of this rule is
equivalent in T ∗ad to

¬(∃x̄αc ∧ αp ∧ ϕ ∧ ¬(∃ȳβp ∧ βc1 ∧ β2)).

According to the definition of the set A1 and Property 5.2.1.1, we have T ∗ad |= ∃?ȳβc1, thus T ∗ad |=
∃?ȳβc1 ∧ βp. According to Property 3.1.0.6 of Chapter 3, the preceding formula is equivalent in
T ∗ad to

¬(∃x̄αc ∧ αp ∧ ϕ ∧ ¬(∃ȳβp ∧ βc1)) ∨ ¬(∃x̄ȳβp ∧ βc1 ∧ ¬β2 ∧ ϕ).

According to the conditions of this rule, the formula ¬β2 is equivalent in T ∗ad to a disjunction of
the form

∨
i∈I β

c2∗
i . The preceding formula is thus equivalent in T ∗ad to

¬(∃x̄αc ∧ αp ∧ ϕ ∧ ¬(∃ȳβp ∧ βc1)) ∧
∧
i∈I

¬(∃x̄ȳβp ∧ βc1 ∧ βc2∗
i ∧ ϕ).

Thus this rule is correct in T ∗ad.
Correctness of the rule 27

¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬9(∃εtrue ∧ βp)) =⇒ true.

According to the properties of ¬9 in Definition 5.3.1.3, the formula βp is the formula αc ∧ αp.
This rule is thus correct in T ∗ad.

Correctness of the rule 28

¬7


∃x̄ αc ∧ αp ∧ ϕ∧

¬8

 ∃ȳ βc ∧ βp∧∧
i∈I

¬9(∃z̄i γc
i ∧ γ

p
i )


 =⇒

 ¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬8(∃ȳ βc ∧ βp))∧∧
i∈I

¬6(∃x̄ȳz̄i δc
i ∧ δ

p
i ∧ ϕ0)



122



5.3. Solving first order constraints in T ∗ad

with I 6= ∅, ϕ is such that every negation symbol ¬k has k ≥ 6, ϕ0 is obtained from ϕ by replacing
all occurrences of ¬k by ¬0 and all propagated-constraint sections by true. The formula δp

i = αp,
δc
i = γc

i ∧ βc ∧ αc.
According to the properties of ¬8 and ¬9 in Definition 5.3.1.3, we have βp = αc ∧ αp and

γp = αc ∧ αp ∧ βc. The left hand side of this rule is equivalent in T ∗ad to

¬(∃x̄αc ∧ αp ∧ ϕ ∧ ¬(∃ȳβc ∧
∧
i∈I

¬(∃z̄iγc
i ))). (5.16)

According to the properties of ¬9 and the definition of the set A1, all the variables of ȳ are
reachable in ∃ȳβc. Thus, according to Property 5.2.1.1, we get T ∗ad |= ∃?ȳβc. According to
Corollary 3.1.0.6 defined in Chapter 3, the formula (5.16) is equivalent in T ∗ad to

¬((∃x̄αc ∧ αp ∧ ϕ ∧ ¬(∃ȳβc)) ∨
∨
i∈I

(∃x̄ȳz̄iγc
i ∧ βc ∧ αc ∧ αp ∧ ϕ)),

i.e. to

¬(∃x̄αc ∧ αp ∧ ϕ ∧ ¬(∃ȳβc ∧ αc ∧ αp)) ∧
∧

i∈I ¬(∃x̄ȳz̄iγc
i ∧ βc ∧ αc ∧ αp ∧ ϕ).

Since βp = αc ∧ αp, δp
i = αp and δc

i = γc
i ∧ βc ∧ αc then the preceding formula is equivalent in

T ∗ad to
¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬8(∃ȳ βc ∧ βp)) ∧

∧
i∈I

¬6(∃x̄ȳz̄i δc
i ∧ δ

p
i ∧ ϕ0).

Thus this rule is correct in T ∗ad.
Proof third part: Let us show that every finite application of the rules on an initial working
formula produces a final working formula. Let ϕ be an initial working formula of the form
¬6(∃ε true ∧

∧
i∈I ϕi), where all the negations of the ϕi are of the form ¬0. The only rule which

can be applied is the rule 24, which starts the solving process by a top-down simplification and
propagation of constraints. It is the rules 1...24 which will be used in these steps. At the end,
all the sub-working formulas contain negations of the form ¬7. The rule 25

¬7

[
∃x̄ αc ∧ αp∧∧

i∈I ¬9(∃ȳiβ
c
i ∧ β

p
i )

]
=⇒ ¬8

[
∃x̄1αc1 ∧ αc2∗ ∧ αp∧∧

i∈I′ ¬9(∃ȳiβ
c
i ∧ β

p∗
i )

]
with I = ∅ can now be applied on the most nested sub-working formulas and changes the
negations from ¬7 into ¬8, then the rule 26,

¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬8(∃ȳβc ∧ βp)

]
=⇒

[
¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬9(∃ȳβc1 ∧ βp))∧∧

i∈I ¬1(∃x̄ȳβp ∧ βc1 ∧ βc2∗
i ∧ ϕ0)

]
can be applied and changes every sequence of the form ¬7¬8 into a sequence of the form ¬7¬9.
This rule creates also a conjunction of working formulas each one containing negations of the
form ¬1, on which the first steps will be applied again. When a sequence ¬7¬9 is obtained, then
the rule 27

¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬9(∃εtrue ∧ βp)) =⇒ true

or the rule 25 can be applied and changes the internal negations from ¬7¬8 to ¬8¬9. When we
have only sequences of the form ¬7¬8¬9 we can decrease the depth of the working formula from
3 to 2 by applying the rule 28

¬7


∃x̄ αc ∧ αp ∧ ϕ∧

¬8

 ∃ȳ βc ∧ βp∧∧
i∈I

¬9(∃z̄i γc
i ∧ γ

p
i )


 =⇒

 ¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬8(∃ȳ βc ∧ βp))∧∧
i∈I

¬6(∃x̄ȳz̄i δc
i ∧ δ

p
i ∧ ϕ0)


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All these steps are repeated until reaching the following formula

¬7(∃ε true ∧
∧
i∈I

¬8(∃x̄i α
c
i ∧ α

p
i ∧

∧
j∈Ji

¬9(∃ȳij β
c
ij ∧ β

p
ij))),

which is a final working formula.

5.3.4 The algorithm of resolution

Solving a general constraint ϕ in T ∗ad proceeds as follows:

1. Transform ϕ into a normalized formula, then into an initial working formula φ, which is
equivalent to ϕ in T ∗ad.

2. Transform φ into a final working formula ψ using the rewriting rules defined in the subsec-
tion 5.3.3.

3. Extract from ψ the disjunction of general solved formulas, equivalent to ψ in T ∗ad. If the
disjunction contains the general solved formula true, then it is reduced to true.

Example 5.3.4.1 Let ϕ be the following constraint having i, j as free variables:

∃xx = fij ∧ i > 0 ∧ ¬numx ∧ numi ∧ numj ∧ ¬(∃k j = 2k ∧ numk).

We can see that numj ∧ ¬(∃k j = 2k ∧ numk) is always false in T ∗ad since for every variable j,
there exists a unique variable k such that j = 2k (axiom 13n). Let us transform ϕ into an initial
working formula (the propagated-constraint sections are underlined):

¬6¬0(∃xx = fij ∧ i > 0 ∧ ¬numx ∧ numj ∧ true ∧ ¬0(∃k j = 2k ∧ numk ∧ true))

After having applied the rules 24, 15, 16, 15, 19, 21, 22, 23 in this order, we obtain

¬7¬6(∃xx = fij ∧ i > 0 ∧ ¬numx ∧ numi ∧ numj ∧ true ∧ ¬0(∃k j = 2k ∧ numk ∧ true))

The rule 24 can now be applied, we get

¬7¬7

[
i > 0 ∧ numi ∧ numj ∧ true∧
¬1(∃xk x = fij ∧ j = 2k ∧ numk ∧ ¬numx ∧ i > 0 ∧ numi ∧ numj)

]

After having applied on the sub-working formula ¬1(...) the rules 15, 19, 21, 12, 22, 23 the
preceding formula is equivalent to

¬7¬7

[
i > 0 ∧ numi ∧ numj ∧ true∧
¬6(∃xk x = fij ∧ j − 2k = 0 ∧ numk ∧ ¬numx ∧ i > 0 ∧ numi ∧ numj)

]

The rule 24 can be applied. We get

¬7¬7(i > 0 ∧ numi ∧ numj ∧ true ∧ ¬7(true ∧ i > 0 ∧ numi ∧ numj))

The rules 25, 26 are applied in this order and we obtain

¬7¬7(i > 0 ∧ numi ∧ numj ∧ true ∧ ¬9(true ∧ i > 0 ∧ numi ∧ numj))

Finally, by application of the rule 27, we get the final working formula ¬7true, which is equivalent
to the empty disjunction of general solved formulas, i.e. false.
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Since T ∗ad has at least one model and according to properties 5.3.3.1, 5.3.1.5 and 5.3.1.7, we
get the following corollary

Corollary 5.3.4.2 Each formula is equivalent in T ∗ad, either to true, or to false, or to a dis-
junction of general solved formulas having at least one free variable and being equivalent neither
to true nor to false in T ∗ad.
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Chapter 6

Conclusion

We have presented in this thesis new classes of theories and given for each one a decision pro-
cedure. We have also presented an automatic way to combine any first order theory T with the
theory of finite or infinite and have shown that if T is flexible than T ∗ is complete. We have
ended this thesis by a general algorithm solving any first order constraint in a combination of
trees and rational numbers.

S. Vorobyov [41] have shown that the problem of deciding if a proposition is true or not in the
theory of finite or infinite trees is non-elementary, i.e. the complexity of all algorithms solving
propositions is not bounded by a tower of powers of 2′s (top down evaluation) with a fixed height.
A. Colmerauer and T. Dao [7] have also given a proof of non-elementary complexity of solving
constraints in this theory. As a consequence, the complexity of our algorithm and the size of
our solved formulas are of this order. We can show easily that the size of our solved formulas is
bounded above by a top down tower of powers of 2′s, whose height is the maximal depth of nested
negations in the initial formula. The function α(ϕ) used to show the termination of our rules
illustrates this result. However, the general algorithm of Chapter 5 is reduced to the algorithm
of [16] if the initial formula contains only tree constraints well typed. In this case, we will get
without any doubts the same performances than those of [16], i.e. solving formulas having until
160 nested alternated quantifiers (∃∀). On the other hand, the constraints expressing k-winning
positions in [16, 7] can be expressed in a much more easy way in an extension into trees of
positive integer numbers. In fact, while the integer a is expressed in [16] by the tree 25 fa(0),
this integer will be expressed directly using the term a in the extension into trees of positive
integer numbers. This simplification will probably enable us to get better performances in terms
of time-execution and maximal depth of solved formulas comparing with those of [16].

Currently, we try to find a more abstract characterization and/or a model theoretic char-
acterization of the decomposable theories. The actual definition gives only algorithmic insight
into what it means for a theory to be complete. We expect to add new vectorial quantifiers in
the decomposition such as ∃n which means there exists n and ∃Ψ(u)

n,∞ which means there exists n
or infinite, in order to increase the size of the set of decomposable theories and may be get an
abstract definition much more simple than the one defined in this thesis. Another interesting
challenge is to find which special quantifiers must be added to the decomposable theories to
get an equivalence between complete theory and decomposable theory. A first attempt on this
subject is actually in progress using the quantifiers ∃n and ∃Ψ(u)

n,∞ . It would be also interesting to
show if these new quantifiers are enough to prove that every theory which accepts elimination of
quantifiers is decomposable.

25Of course f0(x) = x and fa+1(x) = f(fa(x))
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We have also established a long list of infinite and zero-infinite decomposable theories. We
can cite for example: theory of finite trees, theory of infinite trees, theory of finite or infinite
trees [19], theory of additive rational or real numbers with addition and subtraction, theory of
linear dense order without endpoints, theory of ordered additive rational or real numbers with
addition, subtraction and a linear dense order relation without endpoints, combination of tress
and ordered additive rational numbers [24], construction of trees on an ordered set [23], extension
of trees by first-order theories [20].

Currently, we are showing the decomposability of other fundamental theories such as: theory
of lists using a combination of particular trees, theory of queues as it has done in [39], and the
combination of trees and real numbers together with addition, subtraction, multiplication and a
linear dense order relation without endpoints. We try also to find some formal methods to get
easily the sets ψ(u), A′, A′′ and A′′′ for any decomposable theory T .

Our initial aim in this thesis was to give axiomatizations of complex theories around trees
and show their completeness. We have made better by introducing the term extension into trees
of theories and by giving conditions on T and only on T so that the theory T+trees is complete.
We have also shown the completeness of a theory built on the model of Prolog III, which was
unproved before. In order to extend this theoretical work, we plan with Thom Fruehwirth [27]
to add to CHR a general mechanism to treat our normalized formulas. This will enable us to
implement quickly and easily our algorithms and get a general idea on the expressiveness of first
order constraints in complete theories around trees.
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Abstract

The goal of this thesis is the study of a harmonious way to combine any first order theory
with the theory of finite or infinite trees. For that:

First of all, we introduce two classes of theories that we call infinite-decomposable and zero-
infinite-decomposable. We show that these theories are complete and accept a decision procedure
which for every proposition gives either true or false. We show also that these classes of theories
contain a large number of fundamental theories used in computer science, we can cite for example:
the theory of additive rational or real numbers, the theory of the linear dense order without
endpoints, the theory of finite or infinite trees, the construction of trees on an ordered set, and
a combination of trees and ordered additive rational or real numbers.

We give then an automatic way to combine any first order theory T with the theory of finite
or infinite trees. A such hybrid theory is called extension into trees of the theory T and is denoted
by T ∗. After having defined the axiomatization of T ∗ using those of T , we define a new class of
theories that we call flexible and show that if T is flexible then T ∗ is zero-infinite-decomposable
and thus complete. The flexible theories are first order theories having elegant properties which
enable us to handle easily first order formulas. We show among other theories that the theory
Tad of ordered additive rational numbers is flexible and thus that the extension into trees T ∗ad of
Tad is complete.

Finally, we end this thesis by a general algorithm for solving efficiently first order constraints
in T ∗ad. The algorithm is given in the form of 28 rewriting rules which transform every formula
ϕ, which can possibly contain free variables, into a disjunction φ of solved formulas equivalent
to ϕ in T ∗ad and such that φ is either the formula true, or the formula false, or a formula having
at least one free variable and being equivalent neither to true nor to false in T ∗ad. Moreover, the
solutions of the free variables of φ are expressed in a clear and explicit way in φ.

Keywords: Theory of finite or infinite trees, Complete theory, Combination of theories, Solving
first order constraints, Rewriting rules.
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