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Abstract. We are interested in the expressiveness of constraints repre-
sented by general �rst order formulae, with equality as unique relational
symbol and functional symbols taken from an in�nite set F . The chosen
domain is the set of trees whose nodes, in possibly in�nite number, are
labeled by elements of F . The operation linked to each element f of F
is the mapping (a1, . . . , an) 7→ b, where b is the tree whose initial node
is labeled f and whose sequence of daughters is a1, . . . , an.
We �rst consider constraints involving long alternated sequences of quan-
ti�ers ∃∀∃∀ . . .. We show how to express winning positions of two-partners
games with such constraints and apply our results to two examples.
We then construct a family of strongly expressive constraints, inspired
by a constructive proof of a complexity result by Pawel Mielniczuk. This
family involves the huge number α(k), obtained by evaluating top down
a power tower of 2's, of height k. With elements of this family, of sizes
at most proportional to k, we de�ne a �nite tree having α(k) nodes,
and we express the result of a Prolog machine executing at most α(k)
instructions.
By replacing the Prolog machine by a Turing machine we rediscover
the following result of Sergei Vorobyov: the complexity of an algorithm,
deciding whether a constraint without free variables is true, cannot be
bounded above by a function obtained by �nite composition of elemen-
tary functions including exponentiation.
Finally, taking advantage of the fact that we have at our disposal an algo-
rithm for solving such constraints in all their generality, we produce a set
of benchmarks for separating feasible examples from purely speculative
ones. Among others we solve constraints involving alternated sequences
of more than 160 quanti�ers.

1 Introduction

The algebra of (possibly) in�nite trees plays a fundamental act in computer
science: it is a model for data structures, program schemes and program execu-
tions. As early as 1976, Gérard Huet proposed an algorithm for unifying in�nite
terms, that is solving equations in that algebra [11]. Bruno Courcelle has studied
the properties of in�nite trees in the scope of recursive program schemes [8, 9].
Alain Colmerauer has described the execution of Prolog II, III and IV programs
in terms of solving equations and disequations in that algebra [4�6, 1]. Michael



Maher has introduced and justi�ed a complete theory of the algebra of in�nite
trees [12]. Among others, he has shown that in this theory, and thus in the algebra
of in�nite trees, any �rst order formula is equivalent to a Boolean combination
of conjunctions of equations (partially or totally) existentially quanti�ed. Sergei
Vorobyov has shown that the complexity of an algorithm, deciding whether a
formula without free variables is true in that theory, cannot be bounded above,
by a function obtained by �nite composition of elementary functions, including
exponentiation [14]. Pawel Mielniczuk has shown a similar result in the theory
of feature trees, but with a more constructive method, which has inspired some
of our examples [13].

We have recently developed an algorithm for solving general �rst order con-
straints in the algebra of in�nite trees [10]. The purpose of this paper is not
the presentation of this algorithm, but of examples, �rst imagined as tests, then
extended to show the expressiveness of such general constrains. The paper is
organized as follows.

(1) We end this �rst section by making clear the notions of tree algebra and
�rst order constraints in that algebra.

(2) In the second section we consider constraints involving long alternated
sequences of quanti�ers ∃∀∃∀ . . .. We show how to express winning positions of
two-partners games with such constraints and apply our results to two examples.

(3) In the third section, we investigate the most expressive family of con-
straints we know. It involves the truly huge number α(k), obtained by evaluating
top down a tower of powers of 2's, of height k. With elements of this family, of
sizes at most proportional to k, we de�ne a �nite tree having α(k) nodes, and
we express the result of a Prolog machine executing at most α(k). By replacing
the Prolog machine by a Turing machine we rediscover the complexity result of
Sergei Vorobyov mentioned at the beginning of this section. This part has been
strongly in�uenced by the work of Pawel Mielniczuk [13].

(4) We conclude by discussions and benchmarks separating the feasible ex-
amples from the purely speculative ones.

1.1 The algebra of in�nite trees

Trees are well known objects in the computer science world. Here are some of
them:
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Their nodes are labeled by the symbols 0, 1, s, f , of respective arities 0, 0, 1, 2,
taken from a set F of functional symbols, which we assume to be in�nite. Note
that the �rst tree is the only one having a �nite set of nodes, but that the second
one has still a �nite set of (patterns of) subtrees. We denote by A the set of all
trees1constructed on F .

We introduce in A a set of construction operations2, one for each element
f ∈ F which is the mappings (a1, . . . , an) 7→ b, where n is the arity of f and b the
tree whose initial node is labeled f and the sequence of daughters is (a1, . . . , an)
and which be schematized as

1
1

. . . . . .

f

a a
aa n

n

We thus obtain the algebra of in�nite trees constructed on F , which we denote
by (A, F ).

1.2 Tree constraints

We are interested in the expressiveness of constraints represented by general
�rst order formulae, with equality as unique relational symbol and functional
symbols taken from an in�nite set F . These tree constraints are of one of the 9
forms:

s= t, true, false, ¬(p), (p ∧ q), (p ∨ q), (p→ q), ∃x p, ∀x p,

where p and q are shorter tree constraints, x a variable taken from an in�nite
set and s, t terms, that are expressions of one of the forms

x, ft1 . . . tn

where n ≥ 0, f ∈ F , with arity n, and the ti's are shorter terms.
The variables represent elements of the set A of trees constructed on F and

the functional symbols f are interpreted as construction operations in the algebra
of in�nite trees (A, F ). Thus a constraint without free variables is either true or
false and a constraint p(x1, . . . , xn) with n free variables xi establish an n-ary
relation in the set of trees.
1 More precisely we de�ne �rst a node to be a word constructed on the set of strictly
positive integers. A tree a, constructed on F , is then a mapping of type E → F ,
where E is a non-empty set of nodes, each one i1 . . . ik (with k ≥ 0) satisfying the
two conditions: (1) if k > 0 then i1 . . . ik−1 ∈ E, (2) if the arity of a(i1 . . . ik) is n,
then the set of nodes of E of the form i1 . . . ikik+1 is obtained by giving to ik+1 the
values 1, . . . , n.

2 In fact, the construction operation linked to the n-ary symbol f of F is the mapping
(a1, . . . , an) 7→ b, where the ai's are any trees and b is the tree de�ned as follows
from the ai's and their set of nodes Ei's: the set E of nodes of a is {ε} ∪ {ix |x ∈
Ei and i ∈ 1..n} and, for each x ∈ E, if x = ε, then a(x) = f and if x is of the form
iy, with i being an integer, a(x) = ai(y).



2 Long nesting of alternated quanti�ers

We �rst introduce the notions of k-winning an k-losing position in any two-
partners games and in two examples. We show how to express, in any domain,
the set of k-winning positions by a constraint. We end the section by expressing
the k-winning positions of the two examples by tree constraints envolving an
alternated embedding of 2k quanti�ers.

2.1 Winning positions in a two-partners game

Let (V, E) be a directed graph, with V a set of vertices and E ⊆ V × V a set of
edges. The sets V and E may be empty and the elements of E are also called
positions. We consider a two-partner game which, given an initial position x0,
consists, one after another, in choosing a position x1 such that (x0, x1) ∈ E, then
a position x2 such that (x1, x2) ∈ E, then a position x3 such that (x2, x3) ∈ E
and so on... The �rst one who cannot play any more has lost and the other one
has won. For example the two following in�nite graphs correspond to the two
following games:

10 2 3 4 5 6

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

Game 1 A non-negative in-
teger i is given and, one after
another, each partner sub-
tracts 1 or 2 from i, but keep-
ing i non-negative. The �rst
person who cannot play any
more has lost.

Game 2 An ordered pair (i, j) of non-negative
integers is given and, one after another, each
partner chooses one of the integers i, j. Depend-
ing on the fact that the chosen integer u is odd
or even, he then increases or decreases the other
integer v by 1, but keeping v non-negative. The
�rst person who cannot play any more has lost.

Let x ∈ V be any vertex of the directed graph (V, E) and suppose that it is
the turn of person A to play. The position x is said to be k-winning if, no matter
the way the other person B plays, it is always possible for A to win in making
at most k moves. The position x is said to be k-losing if, no matter the way A
plays, B can always force A to lose and to play at most k moves.

Consider the two preceding graphs and mark with +k the positions which
are k-winning and with −k the positions which are k-losing, with each time k
being as small as possible. Vertex 0 of the �rst graph and vertex (0, 0) of the
second one being the only 0-losing positions, are marked with −0. Starting from



the vertices marked with −0 and following the arrows in reverse direction, we
�nd successively the set of vertices to be marked by +1, then −1, then +2, then
−2, then +3, then −3, and so on. We get

-0 +1 +1 -1 +2 +2 -2
-0 +1 -1 +2 -2 +3

+1 +2 +3

+3

+3

+3

+3

-2

+2

-1 +2

-2 -3

-3

-2

and convince ourselves that the set of k-winning positions of game 1 is

{i ∈ N | i < 3k et i mod 3 6= 0}

and of game 2

{(i, j)) ∈ N2 | i+j < 2k et (i+j) mod 2 = 1}.

where N is the set of non-negative integers.

2.2 Expressing k-winning positions by a constraint

Let D be a domain, that is a non-empty set and let G = (V, E) the graph of a
two-partners game, with V ⊆ D. We will express the k-winning positions of G
by a constraint in D involving an embedding ∃∀∃ . . . of 2k alternated quanti�ers.

Let us introduce in D the properties move, winningk et losingk, de�ned by

move(x, y) ↔ (x, y) ∈ E,
winningk(x)↔ x is a k-winning position of G,
losingk(x) ↔ x is a k-losing position of G.

(1)

In D we then have the equivalences, for all k ≥ 0:

winning0(x) ↔ false,
winningk+1(x)↔ ∃y move(x, y) ∧ losingk(y),
losingk(x) ↔ ∀y move(x, y)→ winningk(y).

(2)

Contrary to what we may believe, it follows that we have:

winningk(x)→ winningk+1(x), losingk(x)→ losingk+1(x).

Indeed, from the �rst and the last equivalence of (2) we conclude that these
implications hold for k = 0 and, if we assume that they hold for a certain k ≥ 0,
from the last two equivalences in (2) we conclude that they also hold for k+1.



From (3) we deduce an explicit formulation of winningk, for all k ≥ 0 :

winningk(x) ↔




∃ymove(x, y) ∧ ¬(
∃xmove(y, x) ∧ ¬(
∃ymove(x, y) ∧ ¬(
∃xmove(y, x) ∧ ¬(
. . .

∃ymove(x, y) ∧ ¬(
∃xmove(y, x) ∧ ¬(
false ) . . .)︸ ︷︷ ︸

2k




(3)

where of course all the quanti�ers apply on elements of D. By moving down the
negations, we thus get an embedding of 2k alternated quanti�ers.

In equivalence (3) it is possible to use a more general de�nition of move

than the one given in (1). We �rst remark, that for any non-negative k, the
following property holds:

Property 1 Let three directed graphs be of the form G1 = (V1, E1), G2 =
(V2, E2) and G = (V1 ∪ V2, E1 ∪E2). The graphs G1 and G have the same set of
k-winning positions, if both:

1. the sets of vertices V1 and V2 are disjoint,
2. for all x ∈ V2, there exists y ∈ V2 with (x, y) ∈ E2.

Indeed, from the �rst condition it follows that E1 et E2 are disjoint and thus
that the set of k-winning positions of G is the union of the set of k-winning
positions of G1 with the set of k-winning positions of G2. This last set is empty
because of the second condition.

It follows that:

Property 2 (Generalized move relation) Equivalence (3) holds also for any

move relation obeying to the two conditions:

1. for all x ∈ V and y ∈ V , move(x, y) ↔ (x, y) ∈ E,

2. for all x ∈ D−V there exists y ∈ D−V such that move(x, y).

2.3 Formalizing game 1 in the algebra of in�nite trees

We now reconsider game 1 introduced in section 2.1. As domain D we take the
set A of trees constructed on a set F of functional symbols including among
others the symbols 0, s, of respective arities 0, 1. We code the vertices i of the
game graph by the trees3 si(0). Let G = (V, E) be the graph obtained this way.

As generalized relation move we then can take in the algebra of in�nite
trees:

move(x, y) def= x = s(y) ∨ x = s(s(y)) ∨ (¬(x = 0) ∧ ¬(∃u x=s(u)) ∧ x=y)
3 Of course, s0(0) = 0 and si+1(0) = s(si(0)).



and according to property 2 the set of k-winning positions of game 1 is the set
of solutions in x of the constraint winningk(x) de�ned in (3).

For example, with k = 1 the constraint winningk(x) is equivalent to

x=s(0) ∨ x=s(s(0))

and with k = 2 to

x=s(0) ∨ x=s(s(0)) ∨ x=s(s(s(s(0)))) ∨ x = s(s(s(s(s(0)))))

2.4 Formalizing game 2 in the algebra of in�nite trees

We also reconsider game 2 introduced in section 2.1. As domain D we take the
set A of trees constructed on a set F of functional symbols including among
others the symbols 0, f, g, c, of respective arities 0, 1, 1, 2. We code the vertices

(i, j) of the game graph by the trees c(i, j) with i = (fg)
i
2 (0) if i is even, and

i = g(i−1) if i is odd4. Let G = (V, E) be the graph obtained this way.
The perspicacious reader will convince himself that, as generalized relation

move , we can take in the algebra of in�nite trees:

move(x, y) def= transition(x, y) ∨ (¬(∃u ∃v x=c(u, v)) ∧ x=y)

with

transition(x, y) def=




∃u ∃v ∃w[
(x=c(u, v) ∧ y=c(u, w)) ∨
(x=c(v, u) ∧ y=c(w, u))

]
∧[
(∃i u=g(i) ∧ succ (v, w)) ∨
(¬(∃i u=g(i)) ∧ pred (v, w))

]




succ (v, w) def=
[
((∃j v=g(j)) ∧w=f(v)) ∨
(¬(∃j v=g(j)) ∧ w=g(v))

]

pred (v, w) def=




(∃j v=f(j) ∧
[
(∃k j=g(k) ∧ w=j) ∨
(¬(∃k j=g(k)) ∧w=v)

]
) ∨

(∃j v=g(j) ∧
[
(∃k j=g(k) ∧ w=v) ∨
(¬(∃k j=g(k)) ∧w=j)

]
) ∨

(¬(∃j v=f(j)) ∧ ¬(∃j v=g(j)) ∧
¬(v=0) ∧ w=v)




According to property 2, the set of k-winning positions of game 2 is the set of
solutions in x of the constraint winningk(x) de�ned in (3).

4 Of course, (fg)0(x) = x and (fg)i+1(x) = (fg)i(f(g(x))).



For example, with k = 1 the constraint winningk(x) is equivalent to

x=c(g(0), 0) ∨ x=c(0, g(0)))

and with k = 2 to[
x=c(0, g(0)) ∨ x=c(g(0), 0) ∨ x=c(0, g(f(g(0)))) ∨
x=c(g(0), f(g(0))) ∨ x=c(f(g(0)), g(0)) ∨ x=c(g(f(g(0))), 0)

]

3 Quasi-universality of tree contraints

After all these quanti�ers, we move to constraints, which are so expressive that
their solving becomes quasi-undecidable.

3.1 De�ning a huge �nite tree by a constraint

We set α(k) = 22..
.2

, with k occurrences of 2. More precisely we take

α(0) = 0, α(k + 1) = 2α(k),

with k ≥ 0. The function α increases in a stunning way, since α(0) = 1, α(1) = 2,
α(2) = 4, α(3) = 16, α(4) = 65536 and α(5) = 265536. Thus α(5) is greater
than 1020000, a number probably much greater than the number of atoms of the
universe or the number of nanoseconds which elapsed since its creation!

We suppose that the set A of trees is constructed on a set F of functional
symbols including among others the symbols 0, 1, 2, 3, s, f , of respective arities
0, 0, 0, 0, 1, 4. For k ≥ 0 let us introduce the constraint:

huge k(x) def= ∃z triangle k(3, x, z, 0)

with still for k ≥ 0,

triangle 0(t, x, z, y) def= z=x ∧ z=y

triangle k+1(t, x, z, y) def=




[∃u1 ∃u2 z=f(x, u1, u2, y)]
∧


∀t′ ∀y′ ∀z′[
(t′=1 ∨ t′ = 2) ∧
triangle k(t′, z, z′, y′)

]
→



(t′=1 ∧ form1 (y′)) ∨

(t′=2 ∧



∃u ∃v form2 (u, y′, v) ∧
(t=1→ trans1 (u, v)) ∧
(t=2→ trans2 (u, v)) ∧
(t=3→ trans3 (u, v))













(4)



and

form1 (x) def= ∃u1 . . . ∃u4 x=f(u1, f(u2, u2, u2, u2), f(u3, u3, u3, u3), u4)

form2 (x, z, y) def= ∃u1 . . . ∃u6 z=f(u1, f(u1, u2, u3, x), f(y, u4, u5, u6), u6)

trans1 (x, y) def= ∃u1 . . . ∃u4 x=f(u1, u2, u3, u4) ∧ (y = u2 ∨ y = u3)

trans2 (x, y) def= trans1 (x, y) ∨ x = y

trans3 (x, y) def= x = s(y)

Let us agree that the size |p| of a constraint p, is the number of occurrences of
all symbols except parentheses and commas. (Constraints could be written in
in�x notation.) We then have the double property:

Property 3 (small constraint, big tree)

|huge k(x)| = 9 + 158k and huge k(x) ↔ x=sα(k)−1(0).

To prove the equality, it is su�cient to count:

|huge k(x)| = |triangle k(t, x, z, y)|+ 2,
|triangle 0(t, x, z, y)| = 7,
|triangle k+1(t, x, z, y)| = |triangle k(t, x, z, y)|+ (54 + 27 + 23 + 27 + 23 + 4)

and to conclude. The proof of the equivalence (in the algebra of in�nite trees) is
the subject of next subsection.

3.2 Proof of the second part of property 3

We write x{f, k1, ..., km}y for expressing that x is a tree whose initial node is
labeled f and that there exists i ∈ {k1, . . . , km} such that tree y is the ith
daughter of x. We also agree that:

x{f, k1, ..., km}0y ↔ x = y,
x{f, k1, ..., km}n+1y ↔ ∃u x{f, k1, ..., km}u ∧ u{f, k1, ..., km}ny

with n ≥ 0.
Given the de�nition of huge k(x), to show the second part of property 3 it

is su�cient to show that, in the algebra of in�nite trees, the last of the three
following equivalences holds:

(∃z triangle k(1, x, z, y))↔ x{f, 2, 3}α(k)−1y

(∃z triangle k(2, x, z, y))↔ ∨α(k)−1
i=0 x{f, 2, 3}iy

(∃z triangle k(3, x, z, y))↔ x{s, 1}α(k)−1y

(5)



Let us show by induction on k that the three equivalences hold. They hold for
k = 0. Let us assume that they hold for a certain k ≥ 0 and let us proof that
they hold for k+1. De�nition (4) can be reformulated as

triangle k+1(t, x, z, y) ↔



[∃u1 ∃u2 z=f(x, u1, u2, y)]
∧
∀y

′

(∃z′ triangle k(1, z, z′, y′))→
form1 (y′)





 ∧




∀y′
(∃z′ triangle k(2, z, z′, y′))→

∃u ∃v form2 (u, y′, v) ∧
(t=1→ trans1 (u, v)) ∧
(t=2→ trans2 (u, v)) ∧
(t=3→ trans3 (u, v))







Taking into account our assumptions and using our new notations, we get

triangle k+1(t, x, z, y) ↔



[z{f, 1}x∧ z{f, 4}y]
∧
∀y

′

z{f, 2, 3}α(k)−1y′ →
form1 (y′)





 ∧




∀y′
[
∨α(k)−1

i=0 z{f, 2, 3}iy′]→

∃u ∃v form2 (u, y′, v) ∧
(t = 1→ u{f, 2, 3}v)∧
(t = 2→ u{f, 2, 3}v ∨ u = v) ∧
(t = 3→ u{s, 1}v)







Since the top of a tree x satisfying form1 (x) and the top of a tree z satisfying
form2 (x, z, y) and the top of a tree x satisfying form2 (x) are respectively of the
form

f

f f

x f

f f

x y

z

the top of a tree z satisfying triangle (t, x, z, y) is of the form

α(k)+1

α

α(k)-1

(k)

0
z

x y



It follows that

∃z triangle k+1(t, x, z, y) ↔

∃z




[z{f, 2}α(k)+1x ∧ z{f, 3}α(k)+1y]
∧

∧α(k)

i=0
∀y

′ z{f, 2, 3}iy′ →[∃u ∃v
y′{f, 2}u∧ y′{f, 3}v

]




∧

∀y′ ∀u ∀v[
z{f, 2, 3}α(k)y′ ∧
y′{f, 2}u∧ y′{f, 3}v

]
→

u=v







∧




∧α(k)−1
i=0



∀y′ ∀u ∀v ∀u′ ∀v′
z{f, 2, 3}iy′ ∧

y′{f, 2}u′ ∧ u′{f, 3}α(k)−iu ∧
y′{f, 3}v′ ∧ v′{f, 2}α(k)−iv ∧


→


(t = 1→ u{f, 2, 3}v) ∧

(t = 2→ u{f, 2, 3}v ∨ u = v) ∧
(t = 3→ u{s, 1}v)










Since, in a binary tree the number of nodes of depth n is equal to 2n,

∃z triangle k+1(t, x, y, z) ↔

∃u1 . . . ∃uα(k)




x=u1 ∧ uα(k+1) =y ∧

∧α(k+1)−1

i=1
(t=1→ ui{f, 2, 3}ui+1) ∧
(t=2→ ui{f, 2, 3}ui+1 ∨ ui =ui+1) ∧
(t=3→ ui{s, 1}ui+1










We conclude that the equivalences (5) hold for k+1, which ends the proof.

3.3 Expressing a logic program performing a multiplication

Let step (x, y) be a formula involving to free variables x and y. If we modify
formula triangle k(t, x, z, y) by setting

trans3 (x, y) def= x=y ∨ step (x, y)

and if we introduce the formula

iteration k(x, y) def= ∃z ∃u triangle k(3, x, z, u) ∧ trans3 (u, y)

we then have

iteration k(x, y) ↔
α(k)∨
n=0

(∃u0 . . .∃un x=u0 ∧ un = y ∧
n∧

i=1

step (ui−1, ui)) (6)

The binary relation de�ned by iteration is in some way a bounded transitive
closure of the relation de�ned by step .



Let T be the theory of trees, that is a set of �rst order propositions which
entails all the properties of the algebra of in�nite trees which can be expressed
as �rst order propositions. According to logic programming, the formula

times (si(0), sj(0), x),

in the theory

T ∪




∀i ∀j ∀k ∀k′
(times (0, j, 0)← true) ∧
(times (s(i), j, k′)← times (i, j, k) ∧ plus (j, k, k′)) ∧
(plus (0, j, j)← true) ∧
(plus (s(i), j, s(k))← plus (i, j, k)) ∧




is equivalent to

x = si×j(0).

Given the way a Prolog interpreter works and given equivalence (6), the con-
straint

iteration k(c(f(si(0), sj(0), x), 0), 0)

with

step (x, y) def=




∃i ∃j ∃k ∃k′ ∃l
(x=c(f(0, j, 0), l) ∧ y= l) ∨
(x=c(f(s(i), j, k′), l) ∧ y=c(f(i, j, k), c(p(j, k, k′), l))) ∨
(x=c(p(0, j, j), l) ∧ y= l) ∨
(x=c(p(s(i), j, s(k)), l) ∧ y=c(p(i, j, k), l)) ∨




is equivalent in the algebra of in�nite trees to

x = si×j(0)

provided that i(j +2)+1 ≤ α(k). For k = 5 we can consider that this restriction
is quasi-satis�ed. Thus we have a systematic way to replace a logic Horn clauses
program by a tree constraint.

3.4 Universality versus complexity

Instead of a Prolog machine we can take a Turing machine M , and express by
step (x, y) the fact that M may move from con�guration x to con�guration y by
executing one instruction. We then conclude that:

Property 4 The result produced by a Turing machine, executing at most α(k)
instructions, can be expressed by a tree constraint of size less or equal to a number

proportional to k.



Here also, by taking k = 5 it is possible to express any result that the most pow-
erful computer could compute. Thus the tree constraints have a quasi-universal
expressiveness and the complexity of the algorithms for solving them must be
very high. Let us examine this point in more details and in the case of constraints
without free variables.

Let us consider an algorithm as a Turing machine M whose execution termi-
nates for all word x ∈ V ? given as input. The complexity of M is the mapping
of type N→ N :

n 7→ max
{

i ∈ N there exists x ∈ V ?, with |x| = n, such that M
executes i instructions, with x as input.

}

Let Φα be a set of non-decreasing functions of type N→ N such that

1. the functions of the form n 7→ an + f(bn), with a ∈ N, b ∈ N and f ∈ Φα,
belong also to Φα,

2. there exists a language L, recognizable by a Turing machine of complexity
bounded above by α, but by no Turing machine of complexity bounded above
by an element of Φα.

Property 5 Let T be a Turing machine deciding whether a tree constraint with-

out free variables holds. The complexity of T can not be bounded above by an

element of Φα.

Proof. Let us suppose that there exists such a machine T with a complexity
bounded above by an element f of Φα and let us show that this leads us to a
contradiction. Since Φα is not empty, the language L ⊆ V ? in part 2 of the de�-
nition of Φα, exists. According to property 4, to each word x ∈ V ?, corresponds
a tree constraints px, without free variables, such that

1. x ∈ L if and only if px holds,
2. |px| ≤ b|x|, for some constant b ∈ N,
3. the transformation x 7→ px can be performed by a Turing machine S with

a complexity bounded above by n 7→ an, for some constant a ∈ N. (This
point could be more detailed.)

By linking together the executions of machines S and T , we then build a machine
M ′ which recognizes L and whose complexity is bounded above by n 7→ an +
f(bn), a function which by de�nition belongs to Φα. Thus there is a contradiction
about the properties of L, which ends the proof.

Under the condition of having shown that, as set Φα, we can take the set of
functions, of typeN→ N, obtained by �nite composition of the elementary func-
tions: n 7→ cst, +, ×, n 7→ 2n, we rediscover the result of Sergei Vorobyov [14],
but in the spirit of Pawel Mielniczuk [13]:

Property 6 The complexity of an algorithm, which decides whether a tree con-

straint, without free variables, holds, can not be bounded above by a function

obtained by �nite composition of elementary functions mentioned above.



4 Discussions and conclusion

The presented examples show the contribution of embedded quanti�ers and op-
erators ¬,∧,∨,→ in the expressiveness of tree constraints. They do not really
use the fact that the trees may be in�nite and are also valid in the algebra of
�nite trees. It would be interesting to give examples involving in�nite trees for
coding cyclic structures like �nite states automata, context-free grammars or
λ-expressions, as it has been done in [3, 7] in the frame of logic programming.

At subsection 3.4 we have provided a glimpse of the huge theoretical com-
plexity of an algorithm for solving tree constraints. However, we have succeeded
in producing benchmarks on all our examples. The results are summarized in
the following table, with CPU times given in milliseconds:

k winningk winningk huge k iteration k

game 1 game 2 1× 1
0 0 0 0 -
1 0 150 0 -
2 10 360 10 70
3 10 610 230 -
4 20 840 - -
5 30 1180 - -
10 300 5 970 - -
20 4 270 236 350 - -
40 89 870 - - -
80 3 841 220 - - -

The algorithm is programmed in C++ and the benchmarks are performed on a
350Mhz Pentium II processor, with 512Mb of RAM.

It must be noted that we were able to compute the k-winning positions of
game 1 with k = 80, which corresponds to a formula involving an alternated
embedding of more than 160 quanti�ers. We were prepared to experience di�-
culties in computing the tree of α(k) nodes, beyond k = 3, since α(4) is already
65536. With respect to multiplication by iteration k, we were unable to succeed
beyond k = 2 and had to satisfy ourselves with the computation of 1× 1!

These test have also removed some of our doubts about the correctness of the
complicated formulae of our examples, even if, for readability, we have introduced
predicates for naming subformulae. Of course the de�nitions of theses predicates
are supposed not to be circular and the solver unfold and eliminates them in a
�rst step.

If circular de�nitions are accepted then our constraints look like generalized
completions of logic programs [2]. Our solver can also take into account such pos-
sibly circular de�nitions by delaying their unfoldings as much as possible. With
bad luck the solver does not terminate, with luck it terminates and generates
obligatory a simpli�ed constraint without intermediary predicates.
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